

US006896846B1

(12) United States Patent

Varma et al.

(10) Patent No.: US 6,896,846 B1

(45) **Date of Patent:** May 24, 2005

(54) SYNTHESIS OF ORTHOPAEDIC IMPLANT MATERIALS

(75) Inventors: **Arvind Varma**, Granger, IN (US); **Alexander Mukasyan**, Mishawaka, IN

(US); Bing-Yun Li, Ruston, LA (US)

(73) Assignee: University of Notre Dame, Notre

Dame, IN (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35 U.S.C. 154(b) by 223 days.

- (21) Appl. No.: 10/284,435
- (22) Filed: Oct. 31, 2002

Related U.S. Application Data

- (60) Provisional application No. 60/335,326, filed on Nov. 2, 2001.
- (51) Int. Cl.⁷ B22F 3/00

(56) References Cited

U.S. PATENT DOCUMENTS

4,131,450 A	*	12/1978	Saito et al 75/352
5,143,668 A	*	9/1992	Hida 264/649
5,145,619 A	*	9/1992	Abramovici 264/649
5,718,844 A	*	2/1998	Krynitz et al 252/513

* cited by examiner

Primary Examiner—Daniel Jenkins

(74) Attorney, Agent, or Firm—Jagtiani + Guttag

(57) ABSTRACT

A method for synthesis of biomedical alloys has been developed based on combustion phenomena. This low pressure combustion synthesis (LPCS) technique may be used for production of Co-based and other metal-based alloys, which cover the entire range of orthopaedic implants, including total hip and knee replacements, as well as hone screws, plates, and wires. A unique aspect of the method is that combustion synthesis under low ambient gas pressure allows one to produce pore-free (>99% theoretical density) alloys with high purity and precise chemical and phase compositions.

52 Claims, 9 Drawing Sheets

