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Abstract
Exposure to hard metal tungsten carbide cobalt (WC-Co) “dusts” in enclosed industrial envi-

ronments is known to contribute to the development of hard metal lung disease and an in-

creased risk for lung cancer. Currently, the influence of local and systemic inflammation on

disease progression following WC-Co exposure remains unclear. To better understand the

relationship betweenWC-Co nanoparticle (NP) exposure and its resultant effects, the

acute local pulmonary and systemic inflammatory responses caused by WC-Co NPs

were explored using an intra-tracheal instillation (IT) model and compared to those of CeO2

(another occupational hazard) NP exposure. Sprague-Dawley rats were given an IT dose

(0-500 μg per rat) of WC-Co or CeO2 NPs. Following 24-hr exposure, broncho-alveolar la-

vage fluid and whole blood were collected and analyzed. A consistent lack of acute local

pulmonary inflammation was observed in terms of the broncho-alveolar lavage fluid param-

eters examined (i.e. LDH, albumin, and macrophage activation) in animals exposed to WC-

Co NP; however, significant acute pulmonary inflammation was observed in the CeO2 NP

group. The lack of acute inflammation following WC-Co NP exposure contrasts with earlier

in vivo reports regarding WC-Co toxicity in rats, illuminating the critical role of NP dose and

exposure time and bringing into question the potential role of impurities in particle samples.

Further, we demonstrated that WC-Co NP exposure does not induce acute systemic effects

since no significant increase in circulating inflammatory cytokines were observed. Taken to-

gether, the results of this in vivo study illustrate the distinct differences in acute local pulmo-

nary and systemic inflammatory responses to NPs composed of WC-Co and CeO2;
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therefore, it is important that the outcomes of pulmonary exposure to one type of NPs may

not be implicitly extrapolated to other types of NPs.

Introduction
The increased use of engineered nanomaterials (ENMs) in commercial manufacturing and
consumer products presents an important toxicological concern. As the ENMs are used repeti-
tively and wear over time, nanoparticles (NPs) are generated and released into the environ-
ment, thereby creating a NP exposure hazard. Currently, there are no definitive “standards” for
evaluating the toxic effects of NPs, so identifying NP exposure effects remain a challenge for re-
searchers world-wide [1]. It is evident from the literature that the effects of NP exposure effect
vary greatly, ranging from non-toxic to carcinogenic, depending upon the particle size, compo-
sition, dose, length, and route of exposure [1–6]. The pulmonary effects of NPs are particularly
important, as airborne NPs are inhaled and inhalation is the most frequent route by which
workers are exposed in occupational settings [7–9].

Recently, it has been reported that inhaled NPs are capable of depositing in the lung and
causing systemic effects at sites distant from that of exposure [6, 10, 11]. Translocation of NPs
across the lung and into the bloodstream may result in NP deposition in other organs (liver,
spleen, kidney), with subsequent organ damage or toxicity, and may cause changes in vascular
function or permeability [6, 10, 12–19]. It is difficult to predict the long-term impact of these
systemic effects, so the extent by which systemic effects of NP exposure may contribute to or
alter specific disease states remains unknown.

As mentioned above, occupational inhalation of NPs is of particular concern; specifically,
exposure to tungsten carbide cobalt (WC-Co) dusts and particles. WC-Co is a hard composite
metal commonly used as a material and coating for equipment used in mining and drilling in-
dustries [20]. As these tools are used extensively in a closed environment, WC-Co dusts con-
taining particles of respirable range are released, thereby creating an occupational inhalation
hazard [21, 22]. Inhalation of WC-Co containing dusts and particles is known to cause hard
metal lung disease (HMLD) and a two-fold increased risk for lung cancer [23–27]; however,
the relationship between acute WC-Co toxicity and the potential role of inflammation on
HMLD progression remains unknown. The toxicity of WC-Co particles toward a number of
cell types in vitro has been reported in the literature [28–42]. Specifically, we recently found
that WC-Co particles in the nano-size range were internalized by epithelial cells and that expo-
sure to WC-Co NPs resulted in significant toxicity toward lung epithelial cells at concentra-
tions as low as 10 μg/mL for exposure periods as short as 0.5 hr, significant toxicity at
concentrations of 0.1 and 1 μg/mL after 48 hr exposure and that, overall, WC-Co NPs caused
significantly greater toxicity compared to WC-Co micro-particles [42].

Additionally, there have been several studies regarding the toxicity of WC-Co particles in
vivo [43–50]. These early in vivo studies focused on the local pulmonary responses to WC-Co
exposure and confirmed that the composite material of WC-Co was responsible for the ob-
served toxic effects when compared to tungsten (W), carbide (C), or cobalt (Co) exposure
alone [43, 46, 47]. The WC-Co particles used for these studies were within the 2–4 μm size
range and reported toxicity following single intra-tracheal instillation (IT) exposure was
marked by severe alveolitis, pulmonary edema, and increased levels of lactate dehydrogenase
(LDH), which were observed after 24 hr and up to 72 hr post-exposure [47, 48, 50]. While the
findings regarding the pulmonary toxicity of WC-Co micro-particles were fairly consistent
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among these studies, there is a lack of information regarding the toxicity of WC-Co particles in
the nano-size range in vivo.

Given the gap in knowledge regarding nano-sized WC-Co toxicity in vivo and our recent
findings demonstrating the enhanced toxicity of nano-sized WC-Co compared to micro-sized
WC-Co in vitro, we conducted a pilot study to examine the acute pulmonary and systemic in-
flammatory effects of WC-Co NP exposure, which have not yet been reported, using an intra-
tracheal instillation rat model and compared the outcomes with cerium dioxide (CeO2) NPs.
The Nurkiewicz laboratory, including Minarchick, Porter, and Nurkiewicz whom are coau-
thors of this study, previously reported that CeO2 NPs induced microvascular dysfunction fol-
lowing pulmonary exposure in vivo, characterized by impaired endothelium-dependent and
endothelium-independent dilation and speculated that such microvascular changes may likely
contribute to cardiovascular dysfunction associated with particle exposure [16]. In this case, we
hypothesized that WC-Co NPs would induce dose-dependent acute pulmonary inflammation,
similar to CeO2 NPs [16, 51, 52] and may cause systemic inflammation marked by increased
levels of inflammatory cytokines such as tumor necrosis factor alpha (TNF-α) and interleukin
6 (IL-6).

Materials and Methods

WC-Co and CeO2 NPs
Tungsten carbide cobalt (WC-Co) NPs were purchased from Inframat Advanced Materials
(Manchester, CT). Cerium dioxide (CeO2) NPs were synthesized and characterized as previ-
ously described [16]. Stock solutions of WC-Co and CeO2 NPs were prepared as previously re-
ported [16]. Briefly, dry WC-Co or CeO2 NPs were weighed and added to 10 mL of saline
(Normosol) with 10% fetal bovine serum (FBS) and sonicated over ice to ensure dispersion.
Previous studies showed that saline and FBS reduced particle aggregation and did not induce
mechanical artifacts in terms of broncho-alveolar lavage (BAL) and systemic responses in rats
[16, 53, 54]. The average size of WC-Co and CeO2 NPs in Normosol (isotonic saline) plus 10%
FBS was determined via dynamic light scattering (DLS) using a Malvern Zetasizer version 7.01
(Malvern Instruments Ltd., Malvern, UK). WC-Co NP were also characterized using transmis-
sion electron microscopy (TEM) and scanning electron microscopy (SEM) for confirmation of
size and electron-dispersive x-ray (EDX) to determine elemental composition. For morpholog-
ical examination via TEM, WC-Co particles were diluted in distilled water and vortexed for
60 sec to remove traces of salt and protein from the original suspension which could interfere
with TEM imaging. Five microliters of the resulting suspension were then transferred to a car-
bon-coated copper grid and allowed to dry at room temperature before imaging on a Zeiss
Libra 120 electron microscope at 120 kV (Carl Zeiss Microscopy, Jena, Germany). The elemen-
tal composition of WC-Co NP was determined via SEM/EDX on a JEOL JSM 7600F equipped
with an Oxford Instruments energy dispersive x-ray (EDX) system. EDX measurements were
carried out in the Point & ID mode with spectrum acquisition time of 120 s and spectrum
range of 0–10 keV.

Animals
Male Sprague-Dawley rats (8–9 weeks old) were purchased from Hilltop Laboratories (Scott-
dale, PA). The rats were housed at the West Virginia University animal facility in ventilated
cages, under controlled humidity and temperature, with a 12 hr light/dark cycle with food and
water provided ad libitum. Animals were acclimated for at least 2 days prior to use. Rats were
divided randomly into groups (six animals per group) and assigned to either the 0, 50, 250, or
500 μg WC-Co or 400 μg CeO2 NP group. All procedures were approved by the West Virginia
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University Animal Care and Use Committee (Protocol Number 12–0414) and carried out in
accordance with recommendations set forth in the Guide for the Care and Use of Laboratory
Animals by the National Institutes of Health. All efforts were made to ensure minimal suffering
during stated procedures.

Intra-Tracheal Instillation Rat Model and NP Exposure
The NP stock solutions were sonicated for 5 min on ice to ensure particle dispersion and used
immediately for IT instillation. Rats were lightly sedated with isofluorane gas (5% induction)
and intra-tracheally instilled with a 300 μL bolus dose of the stock NP solutions to achieve final
doses of 0, 50, 250, and 500 μg WC-Co NPs or 400 μg CeO2 NPs. Rats were monitored after in-
stillation until consciousness was regained. After a 24-hr recovery period, rats were anesthe-
tized with thiobutabarbital sodium salt hydrate (Inactin; Sigma-Aldrich, MO) at a dose of 1
mg/kg via intra-peritoneal (i.p.) injection. Anesthesia was confirmed by testing the toe-pinch
reflex. Upon euthanization, the rat abdomen was opened and whole blood was collected in
anti-coagulant (ethylenediaminetetraacetic acid, EDTA) vacuum tubes via the abdominal aorta
until a minimum of 6 mL blood was obtained. Following blood collection, the aorta was cut for
complete exsanguination and broncho-alveolar lavage (BAL) was performed
immediately thereafter.

Blood Plasma Isolation
Whole blood samples were kept on ice until all samples were collected; samples were then cen-
trifuged at 2000 × g for 15 min to separate the plasma from the cellular blood components. The
plasma (supernatant) was drawn off using a pipet, transferred to a cryogenic vial in 0.5 mL ali-
quots, and flash frozen in liquid nitrogen for later cytokine analysis.

Assessment of Pulmonary Inflammation at 24-hr Post-Exposure
Pulmonary inflammation was assessed in the BAL fluid after NP exposure by evaluating several
parameters. First, BAL fluid samples were assessed for cytotoxicity using the LDH assay and
second, albumin protein concentration in the BAL fluid was determined to evaluate the integri-
ty of the epithelial-endothelial (blood-gas exchange) barrier in the lung. Third, inflammatory
cells were isolated from the BAL fluid and differential cell counts performed to identify the
number of alveolar macrophages (AM) and polymorphonuclear leukocytes (PMN) present in
the lung following NP exposure. Further, isolated AM activation states were examined using a
standard chemiluminescence assay. Then, the concentration of inflammatory cytokines (i.e.
TNF-α, IL-6, and IFN-γ) were determined in BAL fluid samples using enzyme-linked immu-
nosorbent assay (ELISA).

BAL Procedure and BAL Fluid Collection. Broncho-alveolar lavage (BAL) was performed
with Ca2+/Mg2+-free phosphate buffered saline (PBS, pH 7.4) plus 5.5 mM D-glucose as previ-
ously described [18]. Briefly, a tracheal cannula was inserted and BAL was performed through
the cannula using ice-cold PBS. The first BAL fluid, totaling 6 mL of PBS, was collected and im-
mediately centrifuged (650 x g, 10 min, 4°C). The resulting first BAL fluid supernatant was
then divided for later analysis: two 0.5 mL aliquots were flash-frozen in liquid nitrogen for cy-
tokine determination by ELISA and the remaining 5 mL was kept on ice for analysis of LDH
and albumin. After the first BAL was collected, BAL was repeated using 8 mL of PBS until a
total of 40 mL BAL fluid was collected. Next, the 40 mL of BAL fluid was centrifuged (650 x g,
10 min, 4°C) and the resulting cell pellet was pooled with the cell pellet from the first BAL
fluid. The pooled cells were re-suspended in HEPES-buffered medium (10 mMN-[2-hydro-
xyethyl]piperazine-N0-[2-ethanesulfonic acid], 145 mM NaCl, 5 mM KCl, 1 mM CaCl2, and
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5.5 mM D-glucose, pH 7.4) and centrifuged a second time (650 x g, 10 min, 4°C). The resulting
supernatant was decanted and a final suspension of the isolated BAL cells was prepared in
HEPES-buffered medium.

Albumin Protein Assay and LDH Activity. LDH and albumin assays were performed as
previously described [16, 55] on the same day as BAL fluid collection using a Roche Cobas
c111 (Roche Diagnostic Systems, Indianapolis, IN). In brief, LDH activity was used as a marker
of cytotoxicity. A commercial assay kit was purchased from Roche Diagnostic Systems and
used to measure LDH activity based on the LDH-driven oxidation of pyruvate coupled with
the reduction of nictoinamide adenine dinucleotide at 340 nm. Albumin concentration was
monitored as an indicator of cellular integrity using a commercially available kit from Sigma
Chemical Co. (St. Louis, MO) based on albumin binding to bromcresol green and measuring
the color change at 628 nm.

Histology. A total of 1.0 × 106 BAL cells were suspended in 200 μL HEPES-buffered medi-
um and transferred to microscope slides using the cytospin approach [56]. The resulting cytos-
pin preparations were stained with modified Wright-Giemsa stain and examined for the
presence of WC-Co particles (black dots in appearance). Cell differentials were determined
using light microscopy. Differential cell counts were calculated by multiplying the total cell
count by the cell differential percentage obtained from the cytospin preparations.

Macrophage Chemiluminescence. The activation state of alveolar macrophages (AM), pre-
viously isolated from the BAL fluid (above), was determined in a total volume of 0.5 mL
HEPES-buffered medium as previously described using a chemiluminescence assay [57]. First,
chemiluminescence of resting AM (non-stimulated) was determined by incubating 1.0 × 106

AM/mL at 37°C for 20 min, followed by the addition of 5-amino-2,3-dihydro-1,4-phthalazine-
dione (luminol) to a final concentration of 0.08 μg/mL. The resulting chemiluminescence was
measured with an automated luminometer (Berthold Autolumat Plus LB 953, Oakridge, TN)
at 390–620 nm for 15 min, where the integral of counts per minute (cpm) versus time was cal-
culated. Next, zymosan-stimulated chemiluminescence was determined by adding 2 mg/mL of
un-opsonized zymosan just prior to the measurement of chemiluminescence. The use of un-
opsonized zymosan in this assay allows for the determination of AM chemiluminescence,
which is a reflection of the macrophage activation state, because un-opsonized zymosan stimu-
lates AM chemiluminescence [58] but does not stimulate polymorphonuclear leukocyte
(PMN) chemiluminescence [59, 60]. Stimulated macrophage chemiluminescence was then cal-
culated by subtracting the cpm from the resting AMmeasurement from the cpm of the zymo-
san-stimulated measurement.

Inflammatory Cytokine ELISA
Standard curves for cytokines including TNF-α, IL-6, and Interferon (IFN-γ) were prepared
using a dilution series with a commercial ELISA kit (Signosis, Inc., Santa Clara, CA). Previously
frozen plasma and BAL fluid samples were thawed and used to determine the cytokine concen-
trations in each sample. Briefly, 100 μL of BAL fluid or plasma sample was added to each well
of the 96-well ELISA plate and incubated for 2 hr to allow sufficient binding to the immobilized
antibodies within each well. Samples were then aspirated and wells were rinsed three times
with 200 μL buffer per wash. Next, 100 μL biotin-labeled detection antibody was added to each
well and incubated for 1 hr. The washing step was repeated followed by the addition of 100 μL
streptavidin-horseradish peroxidase (HRP) conjugate to each well. After 45 min, the washing
step was repeated and 100 μL substrate was added to each well. The plate was further incubated
for 30 min in the dark, followed by the addition of 50 μL stop solution to each well. The absor-
bance of each sample was immediately measured at 450 nm. BAL fluid and plasma samples
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were run in triplicate and the cytokine concentration of each sample was calculated based on
the sample absorbance and the slope of the standard curve for each respective cytokine.

Statistical Analysis
All data were presented as the mean ± standard deviation. Statistical significance between ex-
perimental groups was determined using one-way analysis of variance (ANOVA) and Dun-
nett’s post-hoc analysis in GraphPad Prism 6 software (San Diego, CA).

Results

WC-Co NP Characterization
The average size of WC-Co and CeO2 NPs were determined to be approximately 100 nm and
190 nm, respectively, as prepared in suspension for IT (Normosol containing 10% FBS). This
finding correlated with our TEM and SEM imaging of WC-Co NPs, which qualitatively indi-
cated that WC-Co NPs were approximately 100 nm in diameter (Fig. 1). As shown in Table 1,
the chemical composition of WC-Co NPs included 72.1 wt.%W, 13.4 wt.% Co, 7.6 wt.% C,
and 6.8 wt.% O as reported previously [42].

Pulmonary Inflammation
BAL fluid was collected and analyzed to assess pulmonary inflammation following 24-hr expo-
sure to WC-Co or CeO2 NPs. Compared to the vehicle control group, there were no significant
differences in LDH activity for WC-Co NP exposed animals at the doses studied. A significant
increase in LDH activity was observed in the CeO2 NP group compared to the vehicle control
and all of the WC-Co NP exposed groups (Fig. 2A). This indicated a lack of cytotoxicity in the
WC-Co NP exposed groups at the doses studied while the exposure to CeO2 NPs caused signif-
icant cytotoxicity. Similarly, there were no significant differences found in the albumin content
in WC-Co NP exposed animals compared to vehicle control, although relatively higher albu-
min content was observed at the exposure dose of 500 μg compared to the other doses (i.e.
50 and 250 μg) (Fig. 2B). A significant increase in albumin was found in the CeO2 NP exposed
group compared to the vehicle control and all of the WC-Co NP exposed groups (Fig. 2B).
This indicated that the epithelial-endothelial barrier remained undisrupted in WC-Co NP ex-
posed animals but was affected in the CeO2 NP exposed group.

The activation state of AM was determined via zymogen-stimulated chemiluminescence
assay, where no significant differences were found in AM activation in WC-Co NP exposed an-
imals at all the doses studied compared to the vehicle control group. A significant increase in
AM activation was observed when the CeO2 NP exposed group was compared to the vehicle
control and to all of the WC-Co NP exposed groups (Fig. 2C). Moreover, the number of AMs
in the BAL fluid samples was similar across the vehicle control and all WC-Co NP exposed ani-
mals, where a relatively higher number of AMs was found in the CeO2 NP exposed group com-
pared to the vehicle control and WC-Co NP exposed groups; however, the differences were not
significant (Fig. 3A). Additionally, no significant differences in the number of PMNs were
found between the WC-Co NP exposed groups and the vehicle control group; however, a sig-
nificant increase in the number of PMNs was detected in the CeO2 NP exposed group com-
pared to the vehicle control and the WC-Co NP exposed groups (Fig. 3B).

Further, no significant differences were detected in the levels of inflammatory cytokines (i.e.
TNF-α and IFN-γ) in BAL fluid among the WC-Co, CeO2, and vehicle control groups
(Fig. 4A) with the exception of IL-6, where a significant (P = 0.049) increase in IL-6 was
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Fig 1. Characterization of WC-Co NP via A) TEM (scale bar = 500 nm) and B) SEM (scale bar = 1 μm).

doi:10.1371/journal.pone.0118778.g001
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observed for the CeO2 NP group compared to the vehicle control and WC-Co NP exposed
groups (Fig. 4A).

Systemic Inflammation
The levels of inflammatory cytokines including TNF-α, IL-6, and IFN-γ were determined in
blood plasma samples to examine the potential systemic inflammatory response to WC-Co
and CeO2 NP exposures. No significant differences were observed in TNF-α and IFN-γ levels
among all the animal groups studied (i.e. Control, WC-Co NP, and CeO2 NP groups), but sig-
nificantly (P = 0.049) higher IL-6 was found in the CeO2 NP exposed group compared to the
vehicle control and WC-Co NP exposed groups (Fig. 4B).

Isolated BAL Cell Histology
Histological examination of the cytospin cell preparations revealed a population of AMs pres-
ent in both the vehicle control (Fig. 5A) andWC-Co NP exposed groups (Fig. 5B). AM con-
taining NPs were visible in WC-Co exposed groups (Fig. 5B), where WC-Co NPs were visible
as distinct black dots within the AM (denoted by arrows in Fig. 5B), which were not observed
in the control (vehicle only) group (Fig. 5A). These data suggest that AM were capable of
phagocytizing the WC-Co NP; however, the overall lack of inflammation observed in the other
pulmonary parameters suggests that the WC-Co NPs were recognized as ‘inert’ by the AM and
did not cause significant AM activation.

Discussion
In this study, we determined the acute inflammatory effects of WC-Co and CeO2 NP exposure
in terms of local pulmonary responses via assessment of BAL fluid and the acute systemic ef-
fects via quantification of important inflammatory mediators in the blood.

In general, the presence of particles in the lungs, including NPs, is thought to promote the
recruitment of macrophages, increase macrophage phagocytic activity and thereby stimulate
particle clearance from the lung [61–64] as part of the normal physiological response. Macro-
phage recruitment and phagocytosis of deposited particles is rapid, usually occurring within 24
hr of exposure for most animal species [62]. In this study, WC-Co NPs were phagocytized by
AMs after 24 hr, evidenced by histological examination, which is consistent with reports dem-
onstrating the uptake of other NPs such as graphene [63], titanium dioxide [65, 66], and mag-
netite [67] by AMs in vivo. Interestingly, WC-Co NPs were also “phagocytized” by lung
bronchial epithelial cells in vitro [42], which suggests that NP internalization may not be exclu-
sive to macrophages and is of particular interest, since hard metal (WC-Co) deposits have been
found in workers diagnosed with HMLD [68–70]. In the present study, WC-Co NPs did not
induce significant acute pulmonary inflammation, compared to the vehicle control, in the as-
sessment of LDH activity and albumin content in the BAL fluid following 24-hr exposure at
doses of 50–500 μg per rat. The lack of acute pulmonary inflammation is further supported by
the observation that WC-Co NP exposure caused little change in the number of AM and PMN

Table 1. Summary of the characteristics of WC-Co NP, including size and elemental composition.

Average Size Elemental Composition

DLS TEM SEM

98 nm ~ 100 nm ~ 100 nm 72.1% W 13.4% Co 7.6% C 6.4% O

doi:10.1371/journal.pone.0118778.t001
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Fig 2. Pulmonary inflammation parameters assessed in the BAL fluid following 24-hr exposure to WC-
Co and CeO2 NPs: A) LDH activity, B) albumin, and C) AM chemiluminescence. Values presented as
mean ± SD. (*P< 0.05, ‡P< 0.001 compared to the vehicle control, and †P< 0.01 compared to WC-Co NP
exposed groups)

doi:10.1371/journal.pone.0118778.g002
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Fig 3. Inflammatory cells quantified in BAL fluid samples following 24-hr exposure toWC-Co and
CeO2 NPs: A) alveolar macrophages (AM) and B) polymorphonuclear leukocytes (PMN), represented
as the total number of AM/PMN per 106 isolated BAL cells per rat. Values presented as mean ± SD. (†P
< 0.01 compared to the vehicle control andWC-Co NP exposed groups)

doi:10.1371/journal.pone.0118778.g003
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Fig 4. Inflammatory cytokine concentrations in A) BAL fluid and B) blood plasma. (†P< 0.05 compared to the vehicle control andWC-Co NP exposed
groups)

doi:10.1371/journal.pone.0118778.g004
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Fig 5. Histology of isolated BAL fluid cells from a representative A) control (vehicle only) rat and B) 500 μgWC-Co NP exposed rat. Scale bars = 20
μm. (black arrow = alveolar macrophage, AM; arrow head = erythrocyte; dotted arrow = polymorphonuclear leukocyte, PMN; wide arrow = AMwith WC-Co
NPs)

doi:10.1371/journal.pone.0118778.g005
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cells and did not increase macrophage activation following 24-hr WC-Co NP exposure. This
outcome is similar to that reported for instilled titanium dioxide NPs, which do not cause any
substantial acute pulmonary inflammation after 24 hr at a dose up to 200 μg per rat [65, 66].

It is known that particle size may play a major role in the depth of tissue penetration and
toxicity. Compared to micron-sized particles, NPs are smaller and have higher surface area
(that is available for tissue interaction) and are thereby capable of deeper penetration and pos-
sessing higher toxicity [7, 71–76]. However, no significant alterations in LDH activity and albu-
min levels were observed in this study following WC-Co NP exposure, while significant
increases in LDH and albumin were reported in a similar IT rat model following 24-hr expo-
sure of WC-Co in the 2 μm size range [44, 48, 50]. Two factors may have contributed to the dif-
ferences observed between this study and the previous ones: particle dose and
chemical composition.

Currently, there are no occupational exposure limits defined for WC-Co, so it is difficult to
define appropriate dosing schemes for in vivo examination. However, because WC-Co NP ex-
posure primarily occurs in industrial environments (such as hard metal manufacturing or min-
ing/drilling), inhalation of WC-Co NPs over time will result in NP accumulation in the lung
which could be substantial, depending on how long the person works in such an environment.
In this study, we wanted to define an appropriate WC-Co NP dosage for acute exposure, which
would be representative of a cumulative WC-Co NP inhalation in an industrial environment.
We considered the results from our previous in vitro toxicity studies in lung epithelial cells,
where we reported significant WC-Co NP toxicity in vitro at dosages ranging from 10–1000
μg/mL [42] and on the previous in vivo findings regarding pulmonary CeO2 NP toxicity in the
microgram range. Microgram doses of CeO2 NP are known to cause significant inflammation
in exposed animals [16] and this dosage is considered occupationally relevant, as the micro-
gram dose approximates the total lung deposition of particulate matter in a person working
roughly 30 years in an industrial environment [16]. Given this information and the overall lack
of exposure limits for WC-Co NP, for this study, we elected to dose our animals based on total
lung burden in the microgram range (50–500 μg per rat), which lies within the toxic range of
WC-Co NP in vitro against lung epithelial cells.

Our selection of a total microgram NP dosage contrasts with the dosages in previous WC-
Co NP studies [16, 44, 48, 50], which used a mg per kg body weight dosing scheme with total
WC-Co NP doses ranging from 3–30 mg per rat in a single IT exposure. It is possible that these
previous studies may have overloaded the lung [77–80] and caused significant inflammation
based on particle load rather than the presence of WC-Co itself. It has been suggested that
“particle overload” in rat lungs can occur at particle concentrations of 1 mg per g of lung weight
[77]; given the average lung weight of 1.5–1.9 g per rat, particle overload could occur at total
pulmonary particle dosages of 2 mg or higher [77, 79] regardless of the material. Previously,
significant pulmonary inflammation was reported in rats exposed to 16.67 mg micro-sized
WC-Co per kg body weight [16, 44, 48, 50], a total lung burden of WC-Co particles which lies
within the range of particle overload dose according to the literature. We believe that the mi-
crogram dosage of WC-Co NP applied in our study is well under the overload dose; therefore,
the lack of inflammatory response observed may be due to this phenomenon.

Additionally, in the previous studies, WC-Co particles were obtained from hard metal
manufacturing facilities and were reported to contain a significant amount of iron [44, 48, 50],
which is not found in our WC-Co NPs (see Table 1). Iron has recently been identified as a pul-
monary irritant [81–83] and could have contributed to the observed inflammatory responses
in the previous studies. In our case, elemental analysis of our WC-Co NP indicated that no
contaminants were present and we can therefore attribute the low level of inflammation caused
by acute pulmonary exposure WC-Co NPs to WC-Co itself.
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In this study, no significant differences in inflammatory cytokines (i.e. TNF-α, IL-6, IFN-γ)
were found in plasma or BAL fluid samples for WC-Co NP exposed animals compared to the
vehicle control. These findings indicate that WC-Co NPs did not induce acute systemic inflam-
mation after 24-hr pulmonary exposure at the doses studied. By contrast, within the emerging
body of literature regarding NP toxicity in vivo, it is reported that cadmium oxide [84], titani-
um dioxide [85], and silver [86] NPs are capable of inducing systemic inflammation after acute
pulmonary exposure, marked by increased inflammatory cytokine levels. For example, a three-
fold increase in the pulmonary levels of TNF-α and IFN-γ were observed in mice exposed to
cadmium oxide NPs for 24 hr [84]. Similarly, a significant increase in pulmonary IL-6 was re-
ported in rats exposed to silver NPs for 24 hr [86]. While cadmium oxide and silver NPs in-
creased the pulmonary levels of these inflammatory cytokines, titanium dioxide is capable of
inducing a significant increase in both the pulmonary and systemic levels of IL-6 and IFN-γ
after 24–48 hr of exposure in a rat IT model [85]. Together, these reports demonstrate the ca-
pacity of pulmonary NP exposure to initiate systemic inflammation and highlight the potential
influence that systemic inflammatory cascades may have on the outcomes of pulmonary
NP exposure.

In contrast to the WC-Co NPs, CeO2 NPs induced significant acute pulmonary and system-
ic responses in our intra-tracheal instillation rat model. After 24-hr exposure, we observed sig-
nificant acute inflammation in our CeO2 NP exposed group compared to the vehicle control in
terms of LDH activity, albumin content, and macrophage activation state. These findings are
consistent with a previous study in the Nurkiewicz laboratory [16], where significantly higher
LDH, albumin, and number of activated AMs were observed after 24-hr exposure to 100–400
μg CeO2 NPs, which might have contributed to microvascular dysfunction [16]. The significant
increases in AM activation and number of PMNs in this study indicated that CeO2 NPs stimu-
lated the activation of macrophages and promoted the recruitment of PMNs. Furthermore, in
this study, we found a significant increase in IL-6 levels in both the plasma and BAL fluid of
CeO2 NP exposed animals compared to the vehicle control. This is most likely because IL-6 is
primarily secreted by activated macrophages to stimulate inflammation in response to pulmo-
nary tissue damage caused by the presence of NPs in the lung [61]. Overall, the outcomes re-
ported here for CeO2 NPs are consistent with earlier studies regarding the systemic effects of
exposure [16] and other in vivo [13, 51, 52] and in vitro [87–92] reports concerning CeO2 NP
toxicity in the literature.

In the current in vivo study, WC-Co NPs did not induce significant acute pulmonary and
systemic inflammation as originally hypothesized. We speculate that this could be due to a
number of factors which were not examined fully in this preliminary study. In this case, we
limited our investigation to a single IT dose (i.e. 50–500 μg per rat), representing an acute ex-
posure to a total WC-Co NP lung burden which may accumulate in a person’s lungs after a
period of exposure in an industrial environment. Further, our study focused on a short expo-
sure time (i.e. 24 hr), so it remains possible that WC-Co NP exposure may cause a delayed re-
sponse which was not observed at our 24 hr exposure time. In addition to delayed effects of
WC-Co NP exposure, we speculate that the inflammatory state often observed in hard metal
lung disease patients may be due to the chronic effects of WC-Co NP exposure due to NP ac-
cumulation in the lung over time, which may explain the overall lack of inflammation ob-
served here after a single acute exposure to WC-Co NP for 24 hr. Future studies which
explore the inflammatory effects of multiple WC-Co NP doses and/or longer exposure times
are warranted to better define the pulmonary and systemic inflammatory response to WC-Co
NPs in vivo.
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Conclusions
In this study, we examined the acute local pulmonary and systemic inflammatory responses to
WC-Co NPs using an intra-tracheal instillation rat model. No significant differences between
WC-Co exposed animals and vehicle control were observed in terms of LDH activity, albumin
concentration, or cell differentials. Macrophages isolated fromWC-Co animals also did not
show significant activation when compared to macrophages from vehicle control animals. In
addition, no significant differences in inflammatory cytokines were observed for WC-Co ex-
posed animals. These findings indicated a lack of acute local pulmonary and systemic inflam-
matory responses after 24-hr exposure to WC-Co NPs in an IT dose in the range of 0–500 μg
per rat.
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