# Mixed Solid Sorbents for CO<sub>2</sub> Capture Technologies: Theoretical Predictions and **Experimental Validations**

Yuhua Duan<sup>1</sup>\*, Dan C. Sorescu<sup>1</sup>, David Luebke<sup>1</sup>, Bryan Morreale<sup>1</sup>, Keling Zhang<sup>2</sup>, Xiaohong S. Li<sup>2</sup>, David King<sup>2</sup>, Xianfeng Wang<sup>1,3</sup>, Bingyun Li<sup>1,3</sup>, Jinling Chi<sup>4</sup>, Lifeng Zhao<sup>4</sup>, Yunhan Xiao<sup>4</sup>

<sup>1</sup>National Energy Technology Laboratory, United States Department of Energy, Pittsburgh, PA 15236

<sup>2</sup> Institute for Interfacial Catalysis, Pacific Northwest National Laboratory, Richland, WA 99354

<sup>3</sup> School of Medicine, West Virginia University, Morgantown, WV 26506

<sup>4</sup> Institute of Engineering Thermodynamics, Chinese Academy of Sciences, Beijing 100190, P. R. China

# I. Introduction

Carbon dioxide is one of the major combustion products which once released into the air can contribute to global climate change.<sup>1-4</sup> One approach to solve such environmental problems is to capture and sequester the CO<sub>2</sub>. Current technologies for capturing CO<sub>2</sub> including solvent-based (amines) and CaO-based materials are still too energy intensive. Hence, there is critical need for development of new materials that can capture and release CO<sub>2</sub> reversibly with acceptable energy costs. In particular, solid oxide sorbent materials have been proposed for capturing CO<sub>2</sub> through a reversible chemical transformation leading primarily to formation of carbonate products. Solid sorbents containing alkali and alkaline earth metals have been reported in several previous studies to be promising candidates for CO<sub>2</sub> sorbent applications due to their high  $CO_2$  absorption capacity at moderate working temperatures.<sup>5-8</sup>

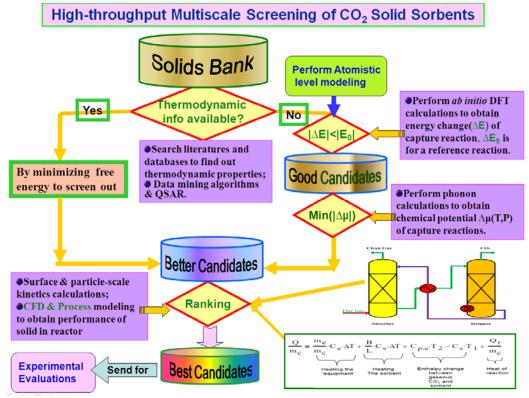



Fig. 1. Schematic of our screening methodology.

#### Proceedings of 2014 International Pittsburgh Coal Conference. Pittsburgh, PA, Oct.6-9, 2014

During past few years we developed a theoretical methodology to identify promising solid sorbent candidates for CO<sub>2</sub> capture by combining thermodynamic database searching with *ab initio* thermodynamics obtained based on first-principles density functional theory (DFT) and lattice phonon dynamics.<sup>5-7, 9-13</sup> As shown in Fig.1, the primary outcome of our screening scheme is a list of promising CO<sub>2</sub> sorbents with optimal energy usage.

At a given CO<sub>2</sub> pressure, the turnover temperature  $(T_t)$  of an individual solid capture CO<sub>2</sub> reaction is fixed. Such  $T_t$  may be outside the operating temperature range  $(\Delta T_o)$  for a particularly capture technology. In order to adjust  $T_t$  to fit the practical  $\Delta T_o$ , in this study, we demonstrate that by mixing different types of solids it's possible to shift  $T_t$  to the range of practical operating conditions.

### **II.** Calculation Methods for Mixed Solid Sorbents

The complete description of the computational methodology together with relevant applications can be found in our previous publications.<sup>5-7, 9-16</sup> The  $CO_2$  capture reactions of solids can be expressed generically in the form (for convenient description, we normalized the reaction to 1 mole of  $CO_2$ )

$$\sum_{R_i} n_{R_i} \text{Solid} \ R_i + CO_2 \leftrightarrow \sum_{P_j} n_{P_j} \text{Solid} \ P_j$$
(a)

where  $n_{Ri}$ ,  $n_{Pj}$  are the numbers of moles of reactants ( $R_i$ ) and products ( $P_j$ ) involved in the capture reactions. We treat the gas phase  $CO_2$  as an ideal gas. By assuming that the difference between the chemical potentials ( $\Delta \mu^{o}$ ) of the solid phases of reactants ( $R_i$ ) and products ( $P_j$ ) can be approximated by the difference in their total energies ( $\Delta E^{DFT}$ ), obtained directly from DFT calculations, and the vibrational free energy of the phonons and by ignoring the PV contribution terms for solids, the variation of the chemical potential ( $\Delta \mu$ ) for reaction (a) with temperature and pressure can be written as<sup>5-7, 9-16</sup>

$$\Delta\mu(T,P) = \Delta\mu^{0}(T) - RT \ln \frac{P_{CO_{2}}}{P_{0}}$$
(1)

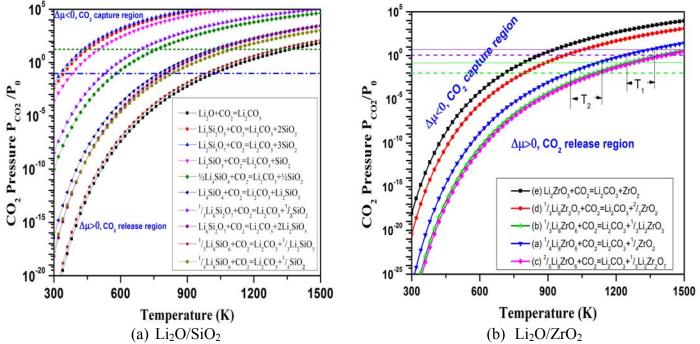
where

$$\Delta \mu^{0}(T) \approx \Delta E^{DFT} + \Delta E_{ZP} + \Delta F^{PH}(T) - G^{0}_{CO_{2}}(T)$$
(2)

Here,  $\Delta E^{DFT}$  is the DFT energy difference between the reactants and products of the reaction (a),  $\Delta E_{ZP}$  is the zero point energy difference between the reactants and products and can be obtained directly from phonon calculations.  $\Delta F^{PH}$  is the phonon free energy change excluding zero-point energy (which is already counted into the  $\Delta E_{ZP}$  term) between the solids of products and reactants.  $P_{CO_2}$  is the partial pressure of  $CO_2$  in the gas phase and  $P_0$  is the standard state reference pressure taken to be 1 bar. The heat of reaction ( $\Delta H^{cal}(T)$ ) can be evaluated through the following equation

$$\Delta H^{cal}(T) = \Delta \mu^{0}(T) + T[\Delta S_{PH}(T) - S_{CO_{2}}(T)]$$
(3)

where  $\Delta S_{PH}(T)$  is the difference of entropies between product solids and reactant solids. The free energy of  $CO_2$  ( $G^0_{CO_2}$ ) can be obtained from standard statistical mechanics,<sup>6, 7, 13</sup> and its entropy ( $S_{CO_2}$ ) can be found in the empirical thermodynamic databases.<sup>17</sup>

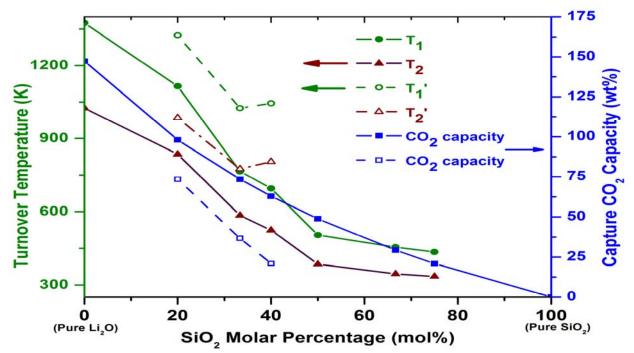

#### **III.** Results and Discussions

When we mix two solids A and B to form a new sorbent C, the turnover temperature of the newly resulted system ( $T_c$ ) is located between those of A and B ( $T_A$ ,  $T_B$ ). Here it was assumed that A is a strong

CO<sub>2</sub> sorbent while *B* is a weak CO<sub>2</sub> sorbent and  $T_A > T_B$ . Also, we assumed that the desired operating temperature  $T_O$  is between  $T_A$  and  $T_B$  ( $T_A > T_O > T_B$ ). Now, depending on the properties of *A* and *B*, we have typically three scenarios to synthesize the mixing sorbent *C*:

## **3.1.** $T_A >> T_B$ and the *A* component is the key part to capture CO<sub>2</sub>.

An example of this case is represented by Li<sub>2</sub>O. This is a very strong CO<sub>2</sub> sorbent which forms Li<sub>2</sub>CO<sub>3</sub>. However, its regeneration from Li<sub>2</sub>CO<sub>3</sub> only can occur at very high temperature (T<sub>A</sub>). In order to move its T<sub>A</sub> to lower temperatures, one can mix some weak CO<sub>2</sub> sorbents (such as SiO<sub>2</sub>, ZrO<sub>2</sub>). Fig. 2 shows the relationship of chemical potential, P<sub>CO2</sub>, and T of the CO<sub>2</sub> capture reactions by the mixed Li<sub>2</sub>O/SiO<sub>2</sub> and Li<sub>2</sub>O/ZrO<sub>2</sub> solids with different mixing ratios. Fig. 3 shows the turnover T and the CO<sub>2</sub> capture capacity of Li<sub>2</sub>O/SiO<sub>2</sub> mixture versus the ratio of Li<sub>2</sub>O/SiO<sub>2</sub>.<sup>5-7, 9, 15, 16, 18, 19</sup>

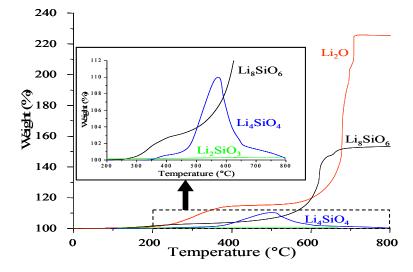



**Fig. 2.** Contour plots of the calculated chemical potential ( $\Delta\mu$ ) versus temperature and the CO<sub>2</sub> pressure (*P* plotted in logarithmic scale) for the CO<sub>2</sub> capture reactions. Only  $\Delta\mu$ =0 curve is shown explicitly. For each reaction, above its  $\Delta\mu$ =0 curve, their  $\Delta\mu$ <0, which means the sorbents absorb CO<sub>2</sub> and the reaction goes forward, whereas below the  $\Delta\mu$ =0 curve, their  $\Delta\mu$ >0, which indicates CO<sub>2</sub> start to be released and reaction goes backward with regeneration of the sorbents.

From Figs. 2 and 3, one can see that after mixing  $Li_2O$  and  $SiO_2$  (or  $ZrO_2$ ) with different  $Li_2O/SiO_2$  (or  $Li_2O/ZrO_2$ ) ratios, the  $T_C$  of the newly formed *C* compound (silicate or zirconate) is lower than  $T_A$  of pure  $Li_2O$  and could be close to the  $\Delta T_o$  range to fit the practical needs.

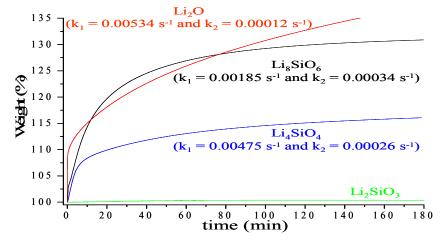
From Figs. 2 and 3, one can see that during absorption of CO<sub>2</sub>, the lithium silicates with Li<sub>2</sub>O/SiO<sub>2</sub> ratio>1 (*e.g.* Li<sub>8</sub>SiO<sub>6</sub>, Li<sub>6</sub>Si<sub>2</sub>O<sub>7</sub>, Li<sub>4</sub>SiO<sub>4</sub>) can be fully converted into SiO<sub>2</sub> and Li<sub>2</sub>CO<sub>3</sub> because thermodynamically Li<sub>2</sub>SiO<sub>3</sub> can further absorb CO<sub>2</sub> to gain energetic advantage. As shown in Fig. 12, for these Li<sub>2</sub>O-rich lithium silicates, in order to obtain maximum CO<sub>2</sub> capture capacity, the operating temperatures during capture should be lower than the turnover temperatures (T<sub>1</sub> for pre-combustion capture or T<sub>2</sub> for post-combustion capture) of Li<sub>2</sub>SiO<sub>3</sub>. If the capture temperature is higher than that temperature for Li<sub>2</sub>SiO<sub>3</sub>, the reverse reaction (Li<sub>2</sub>CO<sub>3</sub>+SiO<sub>2</sub>=Li<sub>2</sub>SiO<sub>3</sub>+CO<sub>2</sub>) will start and the products will be Li<sub>2</sub>SiO<sub>3</sub> and

 $Li_2CO_3$ . In this case, the  $CO_2$  capture capacities of these  $Li_2O$ -rich lithium silicates could not reach their maxima. However, during regeneration, when  $Li_2CO_3$  and  $Li_2SiO_3$  (or  $SiO_2$ ) react with each other to release  $CO_2$  and regenerate the sorbent, the temperature is the key factor to ensure that the original lithium silicate being regenerated. Actually, from Fig. 12 one can see that from the "CO<sub>2</sub> capture region" to the "CO<sub>2</sub> release region" we can have different regenerating temperatures for different silicates.




**Fig. 3** The dependence of the turnover temperatures defined in the text and of CO<sub>2</sub> capture capacity on molar percentage of SiO<sub>2</sub> in the silicates for which calculations are reported here.  $T_1$  and  $T_1$ ' are the turnover temperatures under pre-combustion conditions with CO<sub>2</sub> partial pressure at 20 bars, while  $T_2$  and  $T_2$ ' are the turnover temperatures under post-combustion conditions with CO<sub>2</sub> partial pressure at 0.1 bar. The solid lines indicate to convert lithium silicates to SiO<sub>2</sub> and Li<sub>2</sub>CO<sub>3</sub> ( $T_1$ ,  $T_2$ ). For those Li<sub>2</sub>O-rich lithium silicates (Li<sub>8</sub>SiO<sub>6</sub>, Li<sub>4</sub>SiO<sub>4</sub>, Li<sub>6</sub>Si<sub>2</sub>O<sub>7</sub>) capturing CO<sub>2</sub>, the data shown in dash lines indicate convert them to Li<sub>2</sub>SiO<sub>3</sub> and Li<sub>2</sub>CO<sub>3</sub> ( $T_1$ ',  $T_2$ '). The corresponding CO<sub>2</sub> capture capacities are plotted with open blue squares.

Among these lithium silicates, Fig. 4 shows our dynamic TGA data on the CO<sub>2</sub> capture of these lithium silicates, in addition to the Li<sub>2</sub>O. From these curves, it is clearly seen how the Li<sub>2</sub>O/SiO<sub>2</sub> ratio modified the amount of CO<sub>2</sub> captured and the temperature range in which the process is performed. We note that these experiments are not quantitative, thus the weight increase analysis must be performed in other types of experiments presented below. From the temperature point of view, it is evident that all the silicates captured CO<sub>2</sub> in two different steps, as it was previously described. Analyzing the Li<sub>2</sub>O, as example, the first CO<sub>2</sub> capture process occurred between 180 and 380 °C. The weight increase at this stage is associated with the CO<sub>2</sub> superficial reaction. Then, once the diffusion processes are activated, the second weight increment was produced between 580 and 710 °C. Here, the CO<sub>2</sub> capture is produced in the silicate bulk. A similar interpretation is possible for the other curves depicted as inset in Fig. 4, although the reaction process and the external shell composition may differ in each lithium silicate.

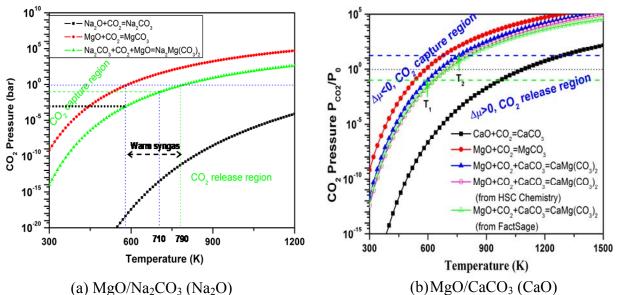

The maximum temperature, at which each lithium silicate is able to trap  $CO_2$ , has the following trend:  $Li_2O > Li_8SiO_6 > Li_4SiO_4 > Li_2SiO_3$ , at which the  $CO_2$  capture properties of  $Li_2SiO_3$  can be considered as

negligible. These results are in good agreement with our theoretical results presented in Figs. 2 and 3. Therefore, based on these results, if the non-tested lithium silicates were evaluated as possible  $CO_2$  capture sorbent, the Li<sub>6</sub>Si<sub>2</sub>O<sub>7</sub> (Li<sub>2</sub>O/SiO<sub>2</sub> ratio higher than that of Li<sub>2</sub>SiO<sub>3</sub>) could present some interesting properties.



**Fig.4.** Dynamic thermogravimetric analyses of different lithium silicates (Li<sub>2</sub>O, Li<sub>8</sub>SiO<sub>6</sub>, Li<sub>4</sub>SiO<sub>4</sub> and Li<sub>2</sub>SiO<sub>3</sub>) into a CO<sub>2</sub> flux (60 mL/min).<sup>18, 19</sup>

Fig. 5 shows the CO<sub>2</sub> isothermal weight gain due to CO<sub>2</sub> absorption as a function of time the same lithium silicates, at 600 °C. Qualitatively, at short times (~10min) the CO<sub>2</sub> capture rates for the lithium silicates are ordered as follows (fastest first):  $Li_2O > Li_8SiO_6 > Li_4SiO_4 > Li_2SiO_3$ , and the same trend is observed for long times (~80min). The only significant variation of this tendency was observed between  $Li_2O$  and  $Li_8SiO_6$ : At large values of weight increase (long times) the order inverted and  $Li_8SiO_6$  started to absorb faster than  $Li_2O$ . This change was observed at a specific time, where the diffusion process must begin to control the reaction process. Therefore, different microstructural features may have induced this change. In addition, although none of the isothermal curves reached equilibrium,  $Li_2O$  is the one which possesses the highest CO<sub>2</sub> absorption capacity at 600 °C for a long time.




**Fig.5.**  $CO_2$  isothermal experiments performed at 600 °C in the following lithium silicates  $Li_8SiO_6$ ,  $Li_4SiO_4$ ,  $Li_2SiO_3$  and  $Li_2O$ . The k constants values reported correspond to the isothermal fitting to a double exponential model.

## 3.2 $T_A >> T_B$ and *B* component is the key part to capture CO<sub>2</sub>

In this case, since  $T_B$  is lower than  $T_O$ , by mixing *A* into *B* will increase the turnover temperature  $T_C$  of the *C* solid to values closer to  $T_o$ . For example, pure MgO has a very high theoretical CO<sub>2</sub> capture capacity. However, its turnover temperature (250 °C) is lower than the required temperature range of 300-470 °C used in warm gas clean up technology and its practical CO<sub>2</sub> capacity is very low, and therefore, it cannot be used directly as a CO<sub>2</sub> sorbent in this technology.<sup>20, 21</sup>

As shown in Fig. 6, by mixing alkali metal oxides M<sub>2</sub>O (M=Na, K, Cs, Ca) or carbonates (M<sub>2</sub>CO<sub>3</sub>) into MgO, the corresponding newly formed mixing systems have higher turnover temperatures making them useful as CO<sub>2</sub> sorbents through the reaction MgO + CO<sub>2</sub> + M<sub>2</sub>CO<sub>3</sub> = M<sub>2</sub>Mg(CO<sub>3</sub>)<sub>2</sub>.<sup>20, 22</sup>



**Fig. 6.** Plots of the calculated chemical potentials versus CO<sub>2</sub> pressures and temperatures for the CO<sub>2</sub> capture reaction by MgO to form double salts.

Fig.7 shows the TSA and PSA test results comparison test of Na-promoted MgO sorbent. As one can see the CO<sub>2</sub> capture capacity is kept constant after first couple cycles.

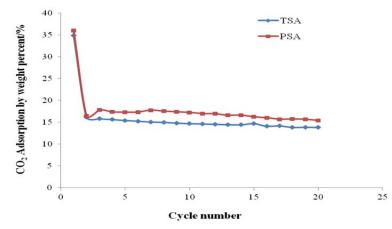



Fig.7. Na-promoted MgO sorbent 20-cycle TSA and PSA test results.

Fig.8 shows the x-ray diffraction pattern of Na-promoted MgO sorbent after loaded with CO<sub>2</sub>. Clearly to see, there is double salt  $Na_2Mg(CO_3)_2$  formed.<sup>20, 21</sup>

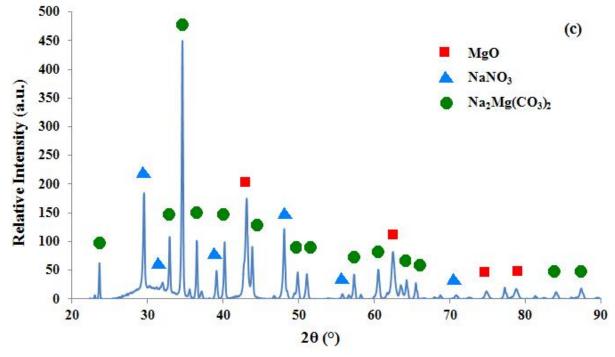


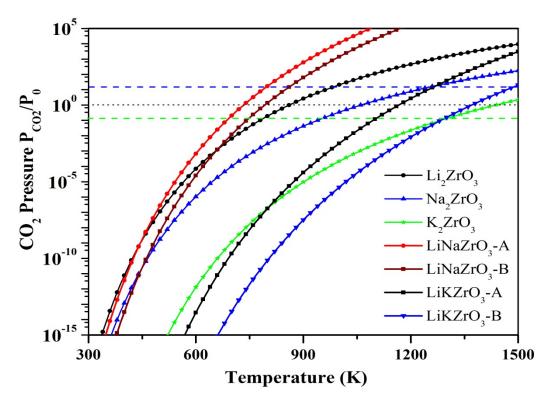

Fig.8. Na-promoted MgO sorbent after test, loaded with CO<sub>2</sub> x-ray diffraction patterns

**Table 1**. The weight percentage of CO<sub>2</sub> capture, the calculated energy change  $\Delta E^{DFT}$ , the zero-point energy changes  $\Delta E^{ZP}$  and the thermodynamic properties ( $\Delta H$ ,  $\Delta G$ ) of the CO<sub>2</sub> capture reactions. (unit: kJ/mol). The turnover temperatures (T<sub>1</sub> and T<sub>2</sub>) of the reactions of CO<sub>2</sub> capture by solids under the conditions of pre-combustion (P<sub>CO2</sub>=20 bar) and post-combustion (P<sub>CO2</sub>=0.1 bar) are also listed.

|                                                                                                                                                             | absorbing  | $\Delta E^{DFT}$ | $\Delta E^{ZP}$ | $\Delta H$ | ΔG       | Turnover        | T (K)          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------|-----------------|------------|----------|-----------------|----------------|
| reaction                                                                                                                                                    | $CO_2 Wt $ | ΔE               | $\Delta E$      | (T=300K)   | (T=300K) | T <sub>1</sub>  | T <sub>2</sub> |
| Li <sub>2</sub> ZrO <sub>3</sub> +CO <sub>2</sub> ↔Li <sub>2</sub> CO <sub>3</sub> +ZrO <sub>2</sub> <sup>a</sup>                                           | 28.75      | -146.648         | 11.311          | -158.562   | -103.845 | 1000            | 780            |
| LiNaZrO <sub>3</sub> A+CO <sub>2</sub> $\leftrightarrow$ $\frac{1}{2}$ (Li <sub>2</sub> CO <sub>3</sub> +Na <sub>2</sub> CO <sub>3</sub> )+ZrO <sub>2</sub> | 26.01      | -152.936         | 7.069           | -176.666   | -110.892 | 805             | 685            |
| $LiNaZrO_3 B+CO_2 \leftrightarrow \frac{1}{2}(Li_2CO_3+Na_2CO_3)+ZrO_2$                                                                                     | 26.01      | -167.872         | 6.934           | -191.526   | -126.477 | 865             | 745            |
| $LiKZrO_3 A+CO_2 \leftrightarrow \frac{1}{2}(Li_2CO_3+K_2CO_3)+ZrO_2$                                                                                       | 23.75      | -264.115         | 6.006           | -287.513   | -225.611 | 1275            | 1095           |
| $LiKZrO_3 B+CO_2 \leftrightarrow \frac{1}{2}(Li_2CO_3+K_2CO_3)+ZrO_2$                                                                                       | 23.75      | -311.604         | 7.080           | -332.612   | -272.410 | hT <sup>b</sup> | 1285           |
| Na <sub>2</sub> ZrO <sub>3</sub> +CO <sub>2</sub> ↔Na <sub>2</sub> CO <sub>3</sub> +ZrO <sub>2</sub> <sup>a</sup>                                           | 23.76      | -140.862         | 2.236           | -158.327   | -114.121 | 1275            | 925            |
| $K_2ZrO_3+CO_2\leftrightarrow K_2CO_3+ZrO_2^a$                                                                                                              | 20.24      | -223.158         | 5.813           | -238.490   | -187.884 | hT <sup>b</sup> | 1285           |

<sup>a</sup> from Refs.<sup>15, 18, 23</sup>.

<sup>b</sup> hT means the temperature is higher than our temperature range (1500K)


## 3.3 $T_A$ and $T_B$ are close to each other and both A and B are active to capture CO<sub>2</sub>

In this case, both A and B components are active to capture  $CO_2$ , and the  $CO_2$  capacity of the mixture is the summation of those of A and B. As we know another potential advantage of mixing solids is to increase

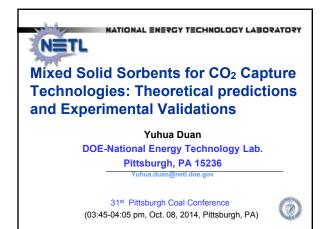
#### Proceedings of 2014 International Pittsburgh Coal Conference. Pittsburgh, PA, Oct.6-9, 2014

the surface area of the solids in order to have faster reaction rates. Such a mixing scenario doesn't show too much advantage in shifting the capture temperature, but may enhance the kinetics of the capture process and eventually make the mixtures more efficient. Although there is no such report in literature, we think such an attempt is worthwhile and are working on several doped systems.

Currently, we are working on doping systems. Here we presented the results of LiMZrO<sub>3</sub> (M=Na, K) capturing CO<sub>2</sub>. In this case, we substituted half of Li in Li<sub>2</sub>ZrO<sub>3</sub> with Na or K. The calculated results are shown in Figure 9 and Table 1.<sup>24</sup> Obviously, such doping system also can be treated as mixing three oxides, Li<sub>2</sub>O, ZrO<sub>2</sub>, M<sub>2</sub>O, M=Na, K. The doping level/mixing ratios could change their thermodynamic properties to fit the industrial needs.



**Fig. 9**. The contour plotting of calculated chemical potentials versus CO<sub>2</sub> pressures and temperatures of the CO<sub>2</sub> capture reactions by LiMZrO<sub>3</sub> and M<sub>2</sub>ZrO<sub>3</sub>. Y-axis plotted in logarithm scale. Only the  $\Delta\mu$ =0 curve is shown explicitly. For each reaction, above its  $\Delta\mu$ =0 curve, their  $\Delta\mu$ <0, which means the solids absorb CO<sub>2</sub> and the reaction goes forward, whereas below the  $\Delta\mu$ =0 curve, their  $\Delta\mu$ >0, which means the CO<sub>2</sub> start to release and the reaction goes backward to regenerate the sorbents.


As one can see from Fig. 9 and Table 1, our results showed that by doping Na into  $Li_2ZrO_3$ , the obtained new solid LiNaZrO<sub>3</sub> has better performance as a CO<sub>2</sub> sorbent for post-combustion capture technologies. For K doping into  $Li_2ZrO_3$ , our calculated thermodynamic results showed that the new solid LiKZrO<sub>3</sub> does not gain improvement on its CO<sub>2</sub> capture performance because its regeneration temperature is much higher than  $Li_2ZrO_3$ . Further detailed analyzes with different ratios of doping/mixing are under the way.

## **IV.** Conclusions

The obtained results showed that by changing the mixing ratio of solid *A* and solid *B* to form mixed solid *C* it's possible to shift the turnover  $T_t$  of the newly formed solid *C* to fit the practical CO<sub>2</sub> capture technologies. When mixing SiO<sub>2</sub> or ZrO<sub>2</sub> into the strong Li<sub>2</sub>O sorbent, one can obtain a series of lithium silicates (or zirconates) with  $T_t$  lower than that of pure Li<sub>2</sub>O. By mixing oxides (Na<sub>2</sub>O, K<sub>2</sub>O, CaO) or their corresponding carbonates into MgO, the obtained mixtures exhibit different thermodynamic behaviors and their  $T_t$  are higher than that of pure MgO. Such results can be used to provide insights for designing new CO<sub>2</sub> sorbents. Therefore, although one single material taken in isolation might not be an optimal CO<sub>2</sub> sorbent to fit the particular needs to operate at specific temperature and pressure conditions, by mixing or doping two or more materials to form a new material, our results showed that it is possible to synthesize new CO<sub>2</sub> sorbent formulations which can fit the industrial needs. Our results also show that computational modeling can play a decisive role for identifying materials with optimal performance.

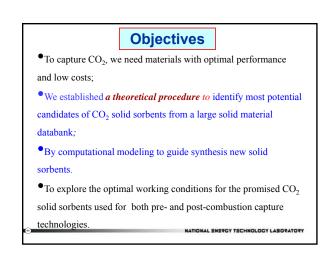
# References

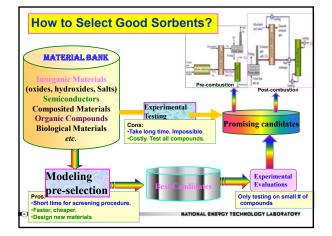
- <sup>1</sup> B. Y. Li, Y. Duan, D. Luebke, and B. Morreale, Applied Energy **102**, 1439 (2013).
- <sup>2</sup> D. Aaron and C. Tsouris, Separation Science and Technology **40**, 321 (2005).
- <sup>3</sup> M. R. Allen, D. J. Frame, C. Huntingford, C. D. Jones, J. A. Lowe, M. Meinshausen, and N. Meinshausen, Nature **458**, 1163 (2009).
- <sup>4</sup> R. S. Haszeldine, Science **325**, 1647 (2009).
- <sup>5</sup> Y. Duan, D. Luebke, and H. W. Pennline, International Journal of Clean Coal and Energy **1**, 1 (2012).
- <sup>6</sup> Y. Duan and D. C. Sorescu, Phys Rev B **79**, 014301 (2009).
- <sup>7</sup> Y. Duan and D. C. Sorescu, J Chem Phys **133**, 074508 (2010).
- <sup>8</sup> Y. Duan, in *Proceedings of 7th~13th Ann. Conf. on Carbon Capture, Sequestration & Utilization*, Pittsburgh, 2008-2014).
- <sup>9</sup> Y. Duan and K. Parlinski, Phys Rev B **84**, 104113 (2011).
- <sup>10</sup> Y. Duan, B. Zhang, D. C. Sorescu, and J. K. Johnson, J. Solid State Chem. **184**, 304 (2011).
- <sup>11</sup> Y. Duan, D. R. Luebke, H. W. Pennline, B. Y. Li, M. J. Janik, and J. W. Halley, Journal of Physical Chemistry C **116**, 14461 (2012).
- <sup>12</sup> Y. Duan, B. Zhang, D. C. Sorescu, J. K. Johnson, E. H. Majzoub, and D. R. Luebke, Journal of Physics-Condensed Matter **24**, 325501 (2012).
- <sup>13</sup> B. Zhang, Y. Duan, and J. K. Johnson, J Chem Phys **136**, 064516 (2012).
- <sup>14</sup> Y. Duan, Phys. Rev. B **77**, 045332 (2008).
- <sup>15</sup> Y. Duan, J Renew Sustain Ener **3**, 013102 (2011).
- <sup>16</sup> Y. Duan, J Renew Sustain Ener **4**, 013109 (2012).
- <sup>17</sup> M. W. J. Chase, J. Phys. Chem. Ref. Data, **Monograph 9**, 1 (1998).
- <sup>18</sup> Y. Duan, Physical Chemistry Chemical Physics **15**, 9752 (2013).
- <sup>19</sup> Y. Duan, H. Pfeiffer, B. Li, I. C. Romero-Ibarra, D. C. Sorescu, D. R. Luebke, and J. W. Halley, Physical Chemistry Chemical Physics **15**, 13538 (2013).
- <sup>20</sup> K. L. Zhang, X. H. S. Li, Y. Duan, D. L. King, P. Singh, and L. Y. Li, International Journal of Greenhouse Gas Control **12**, 351 (2013).
- <sup>21</sup> K. L. Zhang, X. H. S. Li, W. Z. Li, A. Rohatgi, Y. Duan, P. Singh, L. Y. Li, and D. L. King, Advanced Materials Interfaces **1**, 1400030 (2014).
- <sup>22</sup> Y. Duan, K. L. Zhang, X. H. S. Li, D. L. King, B. Y. Li, L. F. Zhao, and Y. H. Xiao, Aerosol and Air Quality Research **14**, 470 (2014).
- <sup>23</sup> Y. Duan, J Renew Sustain Ener **4**, 013109 (2012).
- <sup>24</sup> Y. Duan, ScienceJet **3**, 56 (2014).

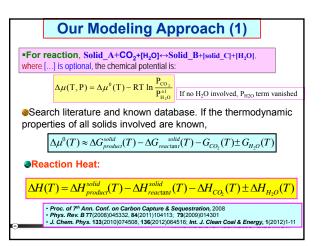


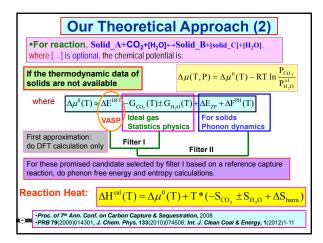
#### Collaborators

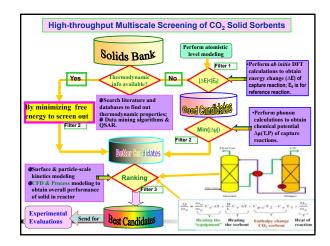
•Drs. Dan C. Sorescu, David Luebke, Bryan Morreale (NETL)

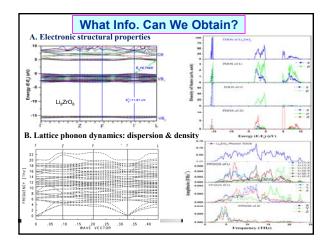

•Drs. Xianfeng Wang, Bingyun Li (WVU)

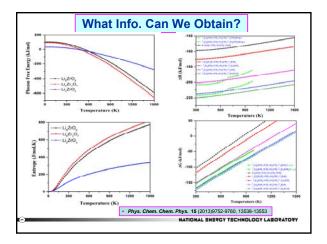

•Drs. Keling Zhang, Xiaohong S. Li, David King (PNNL)

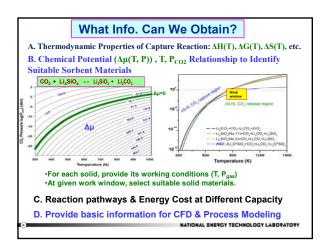

NATIONAL ENERGY TECHNOLOGY LABORATORY

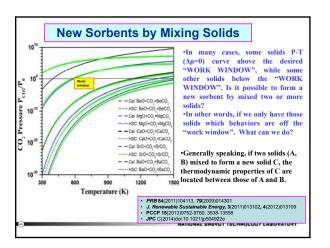

•Drs. Jinling Chi, Lifeng Zhao, Yunhan Xiao (CAS)

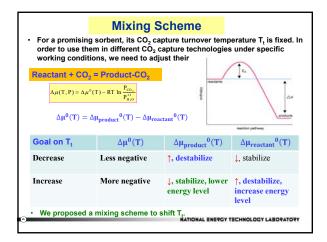

<text>

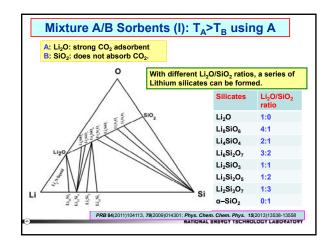


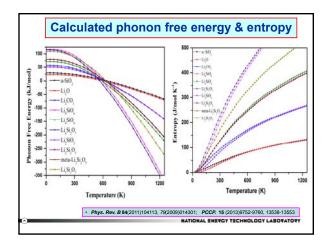



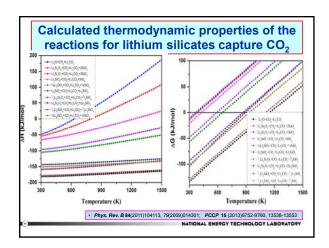



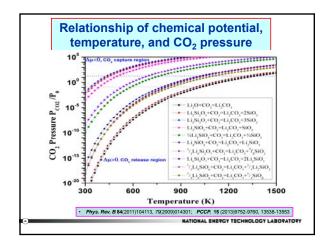



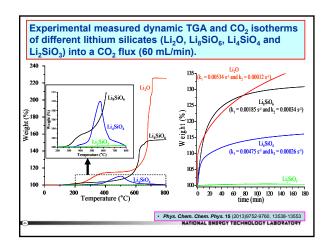



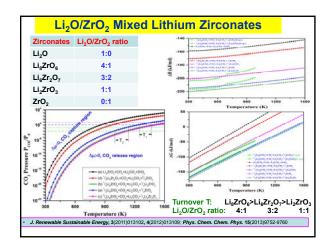



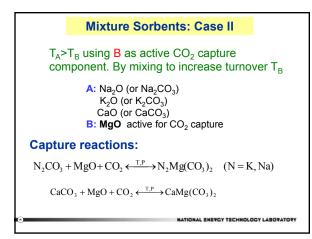



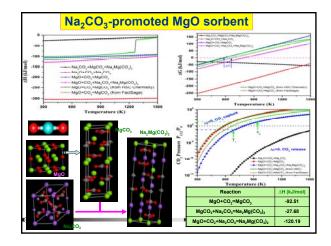



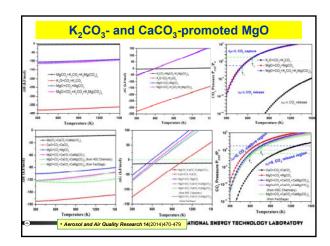



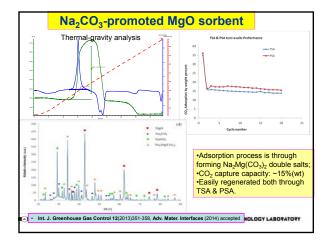


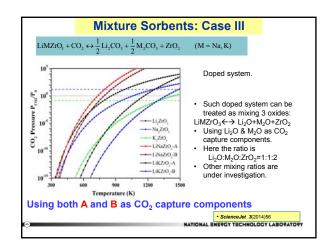



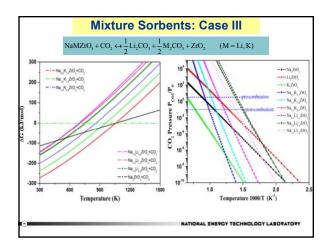





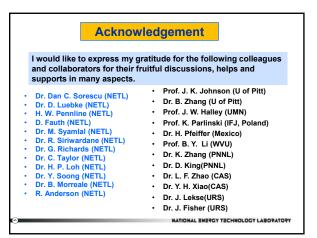



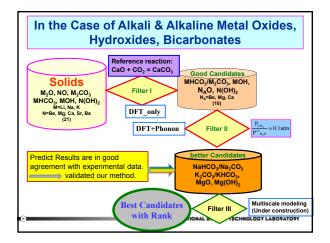





| The turnover temperature $(T_t)$ at $P_{CO2} = 1$<br>CO <sub>2</sub> at post-combustion $(T_1)$ condition with $P_{CO2} = 10$ bar             |                                     |                                     |                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------|
| Reactions                                                                                                                                     | T <sub>t</sub><br>(K)               | Post-combustion<br>T1(K)            | Pre-combustion<br>T <sub>2</sub> (K) |
| $MgO + Na_2CO_1 + CO_2 = Na_2Mg(CO_2),$                                                                                                       | 795                                 | 710                                 | 915                                  |
| $MgO + K_2CO_3 + CO_2 = K_2Mg(CO_3)_2$<br>$MgO + K_2CO_3 + CO_2 = K_2Mg(CO_3)_2$                                                              | 600                                 | 545                                 | 695                                  |
| $MgO + CaCO_1 + CO_2 = CaMg(CO_1),$                                                                                                           | 660                                 | 600                                 | 740                                  |
|                                                                                                                                               | 695 <sup>a</sup> , 705 <sup>b</sup> | 635 <sup>a</sup> , 630 <sup>b</sup> | 785 <sup>a</sup> , 790 <sup>b</sup>  |
| $MgO + CO_2 = MgCO_3$                                                                                                                         | 590                                 | 535                                 | 685                                  |
| ingo oot ingoot                                                                                                                               | 575ª, 675b                          | 520 <sup>a</sup> , 605 <sup>b</sup> | 655ª, 760b                           |
| $CaO + CO_2 = CaCO_3$                                                                                                                         | 1095                                | 975                                 | 1245                                 |
| $Na_2O + CO_2 = Na_2CO_3$                                                                                                                     | hT°                                 | hT                                  | hT                                   |
| $K_2O + CO_2 = K_2CO_3$                                                                                                                       | hT                                  | hT                                  | hT                                   |
| * Calculated by the HSC Chemistry package<br>b Calculated by the FactSage package<br>c hT means the maximum temperature exceeds our temperatu | re range (1500K).                   |                                     |                                      |
| mixing Na <sub>2</sub> O, CaO, K <sub>2</sub> O into I<br>eases;<br>th process modeling by assur<br>pretical value, the overall perf          | ning their                          | CO <sub>2</sub> capacities          | are half of th                       |







| $NaMZrO_3 + CO_2 \leftrightarrow \frac{1}{2}Li_2$                                                                                                                                                             | $CO_3 + \frac{1}{2}N$            | $I_2CO_3 + Z$                                                | CrO <sub>2</sub> | (M =       | = Li, K)       |                                 |                          |                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------------------------|------------------|------------|----------------|---------------------------------|--------------------------|----------------------------|
| III. The weight percentage of CO <sub>2</sub> capture, the ratio<br>and the thermodynamic properties (AH, AG) of the CO <sub>2</sub><br>re by solids under the conditions of pre-combustion (H)               | capture reactions.               | (unit: kJ/mol). T                                            | he turnover      | temperatur | es (T1 and T2  | the zero-poin<br>) of the react | t energy c<br>ions of CO | hanges<br>D <sub>2</sub>   |
| reaction                                                                                                                                                                                                      | absorbing CO <sub>2</sub><br>Wt% | Na <sub>2</sub> O:M <sub>2</sub> O:ZrO <sub>2</sub><br>ratio | AETPT            | ΔEP        | ΔH<br>(T=300K) | лG<br>(T=300К)                  | Turnow<br>T <sub>1</sub> | er T (K)<br>T <sub>2</sub> |
| $\mathrm{Na_2ZrO_3+CO_2 \leftrightarrow Na_2CO_3+ZrO_2^*}$                                                                                                                                                    | 23.76                            | 1:0:1                                                        | -140.862         | 2.236      | -158.327       | -114.121                        | 1275                     | 925                        |
| $\mathrm{Na}_{i_2}\mathrm{Li}_{i_2}\mathrm{ZrO}_3\text{-}\mathrm{B+CO}_2 \leftrightarrow {}^{1/}_{6}\mathrm{Na}_{3}\mathrm{CO}_{3} + {}^{1/}_{6}\mathrm{Li}_{2}\mathrm{CO}_{3} + \mathrm{ZrO}_{2}$            | 24.83                            | $^{3/}e^{3/}e^{1}$                                           | -170.881         | 4.667      | -242.090       | -159.144                        | 805                      | 715                        |
| $\mathrm{Na}_{i,g}\mathrm{Li}_{i,g}\mathrm{ZrO}_{3}\text{-}\mathrm{B+CO}_{2} \leftrightarrow {}^{1}/_{2}\mathrm{Na}_{3}\mathrm{CO}_{3} + {}^{1}/_{2}\mathrm{Li}_{2}\mathrm{CO}_{3} + \mathrm{ZrO}_{2}$        | 26.01                            | %:1/2:1                                                      | -157.839         | 6.480      | -228.381       | -142.555                        | 745                      | 675                        |
| $Na_{i_{2}i_{1}}Li_{i_{2}}ZrO_{3}\text{-}A\text{+}CO_{2} \leftrightarrow {}^{i_{1}}_{i_{1}}Na_{3}CO_{3}\text{+}{}^{i_{2}}_{i_{2}}Li_{2}CO_{3}\text{+}ZrO_{2}$                                                 | 27.31                            | 56%1                                                         | -169.827         | 9.652      | -237.765       | -146.230                        | 735                      | 665                        |
| $\mathrm{Na}_{1,3}\mathrm{K}_{3,3}\mathrm{ZrO}_3\text{-}\mathrm{A}\text{+}\mathrm{CO}_2 \leftrightarrow {}^{1/}_2\mathrm{Na}_2\mathrm{CO}_3 \text{+}{}^{1/}_2\mathrm{K}_2\mathrm{CO}_3\text{+}\mathrm{ZrO}_2$ | 22.77                            | $^{3/}e^{2/}e^{2}$                                           | -210.081         | 2.486      | -281.253       | -199.996                        | 915                      | 825                        |
| $Na_{1,0}K_{1,0}ZrO_3\cdot B^+CO_2^{1/}_2Na_fCO_3+{}^{1/}_2K_fCO_3+ZrO_2$                                                                                                                                     | 21.86                            | 56.5/2:1                                                     | -245.436         | 2.058      | -316.736       | -236.789                        | 1015                     | 915                        |
| $Na_{0.3}K_{1.3}ZrO_3\text{-}B\text{+}CO_2 \leftrightarrow ^{1/}_0Na_2CO_3\text{+}^{1/}_0K_2CO_3\text{+}ZrO_2$                                                                                                | 21.02                            | %2%4:1                                                       | -278.147         | 1.519      | -349.077       | -272.038                        | 1125                     | 1015                       |
| $Li_2ZrO_3{+}CO_2 \leftrightarrow Li_2CO_3{+}ZrO_2 \xrightarrow{h}$                                                                                                                                           | 28.75                            | 0:1:1                                                        | -146.648         | 11.311     | -158.562       | -103.845                        | 1000                     | 780                        |
| $K_2ZrO_3{+}CO_2 \leftrightarrow K_2CO_3{+}ZrO_2 \wedge$                                                                                                                                                      | 20.24                            | 0:1:1                                                        | -223.158         | 5.813      | -238.490       | -187.884                        | hT*                      | 1285                       |
| Ref 12.<br>Ref 12.<br>ans the temperature is higher than 1500K.                                                                                                                                               |                                  |                                                              |                  |            |                |                                 |                          |                            |

| reaction         absorbing<br>CO, W/%         ALS <sup>207</sup><br>(1.900K)         AE <sup>207</sup><br>(1.900K)         M<br>(1.900K)         AL<br>(1.900K)         T,<br>T,<br>T,<br>T,<br>T,<br>T,<br>T,         T,<br>T,         T,<br>T,         T,<br>T,         T,<br>T,         T,         T, <th></th> <th></th> <th></th> <th></th> <th></th> <th>so listed.</th> <th>Turnover</th> <th>T (K)</th> |                                                                                                                                |                                               |                                |                             |                                   | so listed.                 | Turnover         | T (K)          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------|-----------------------------|-----------------------------------|----------------------------|------------------|----------------|
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | reaction                                                                                                                       | absorbing<br>CO <sub>2</sub> Wt%              | ΔE <sup>DFT</sup>              | $\Delta E^{2P}$             | ΔH<br>(T=300K)                    | ΔG<br>(T=300K)             |                  | <u> </u>       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Li <sub>2</sub> ZrO <sub>2</sub> +CO <sub>2</sub> ↔Li <sub>2</sub> CO <sub>2</sub> +ZrO <sub>2</sub> *                         | 28.75                                         | -146.648                       | 11.311                      | -158.562                          | -103.845                   | · ·              |                |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LiNaZrO <sub>3</sub> A+CO <sub>2</sub> +>%(Li <sub>2</sub> CO <sub>3</sub> +Na <sub>2</sub> CO <sub>3</sub> )+ZrO <sub>2</sub> | 26.01                                         | -152.936                       | 7.069                       | -176.666                          | -110.892                   | 805              | 685            |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LiNaZrO <sub>3</sub> B+CO <sub>2</sub> ↔%(Li <sub>2</sub> CO <sub>3</sub> +Na <sub>2</sub> CO <sub>3</sub> )+ZrO <sub>2</sub>  | 26.01                                         | -167.872                       | 6.934                       | -191.526                          | -126.477                   | 865              | 745            |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LiKZrO, A+CO,↔%(Li,CO,+K,CO,)+ZrO,                                                                                             | 23.75                                         | .264115                        | 6.006                       | -287 513                          | .225.611                   | 1275             | 1095           |
| K20,-C0,-K00/20,-         2024         -223158         5431         -238.490         -187.884         517         1285           sults:         Io be CO2 sorbent the performance of LiNaZrO3 is better than that of Li2ZrO3, but he performance of LiKZrO3 is much worse as its regeneration T is higher.         Sy doping with Na into Li2ZrO3, the obtained new solid LiNaZrO3 is a better CO2 sorbent applying to post-combustion capture technology;         Sy doping K into Li2ZrO3 to form new solid LiKZrO3, from the thermodynamic point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LiKZrO <sub>1</sub> B+CO <sub>3</sub> ↔%(Li <sub>3</sub> CO <sub>3</sub> +K <sub>3</sub> CO <sub>1</sub> )+ZrO <sub>3</sub>    |                                               |                                | 7.080                       |                                   |                            | hT <sup>b</sup>  | 1285           |
| sults:<br>To be $CO_2$ sorbent the performance of LiNaZrO <sub>3</sub> is better than that of Li <sub>2</sub> ZrO <sub>3</sub> , but<br>he performance of LiKZrO <sub>3</sub> is much worse as its regeneration T is higher.<br>By doping with Na into Li <sub>2</sub> ZrO <sub>3</sub> , the obtained new solid LiNaZrO <sub>3</sub> is a better CO <sub>2</sub><br>sorbent applying to post-combustion capture technology;<br>By doping K into Li <sub>2</sub> ZrO <sub>3</sub> to form new solid LiKZrO <sub>3</sub> , from the thermodynamic point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Na <sub>3</sub> ZrO <sub>1</sub> +CO <sub>3</sub> ↔Na <sub>3</sub> CO <sub>1</sub> +ZrO <sub>3</sub> *                         | 23.76                                         | -140.862                       | 2.236                       | -158.327                          | -114.121                   | 1275             | 925            |
| To be $CO_2$ sorbent the performance of LiNaZrO <sub>3</sub> is better than that of Li <sub>2</sub> ZrO <sub>3</sub> , but<br>he performance of LiKZrO <sub>3</sub> is much worse as its regeneration T is higher.<br>By doping with Na into Li <sub>2</sub> ZrO <sub>3</sub> , the obtained new solid LiNaZrO <sub>3</sub> is a better CO <sub>2</sub><br>sorbent applying to post-combustion capture technology;<br>By doping K into Li <sub>2</sub> ZrO <sub>3</sub> to form new solid LiKZrO <sub>3</sub> , from the thermodynamic point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | K <sub>3</sub> ZrO <sub>1</sub> +CO <sub>3</sub> ↔K <sub>3</sub> CO <sub>1</sub> +ZrO <sub>3</sub> *                           | 20.24                                         | -223.158                       | 5.813                       | -238.490                          | -187.884                   | hT <sup>b</sup>  | 1285           |
| mprovements over $Li_2ZrO_3$ on its overall $CO_2$ capture performance.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | To be CO <sub>2</sub> sorbent the performance of LiKZrO <sub>3</sub><br>By doping with Na into Li <sub>2</sub> Zr              | is much<br>O <sub>3</sub> , the o<br>mbustion | worse a<br>obtained<br>capture | is its re<br>new s<br>techn | egeneratio<br>olid LiNa<br>ology; | on T is hig<br>ZrO₃ is a b | her.<br>better C | 0 <sub>2</sub> |

| <ul> <li>Our methodology can predict thermodynamic properties of solid materials and their CO<sub>2</sub> capture reactions, which can be used to identify good candidates from vast of material databank.</li> <li>Single solid may not satisfy the industrial operating conditions as a CO<sub>2</sub> sorbent, however, by mixing two or more solids, the new formed solid may satisfy the industrial needs by shifting the turnover T into practical operation range.</li> <li>These results provide guidelines to synthesize</li> </ul> |        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| conditions as a CO <sub>2</sub> sorbent, however, by mixing two<br>or more solids, the new formed solid may satisfy the<br>industrial needs by shifting the turnover T into<br>practical operation range.                                                                                                                                                                                                                                                                                                                                    | e      |
| > These results provide guidelines to synthesize                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | o<br>e |
| sorbent materials by mixing different solids with different ratio.                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |

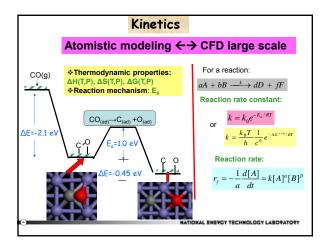


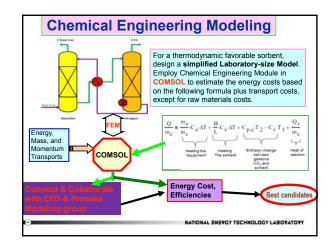


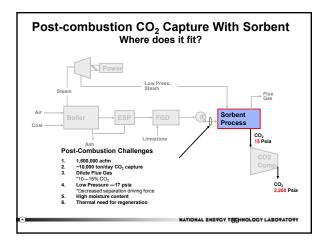


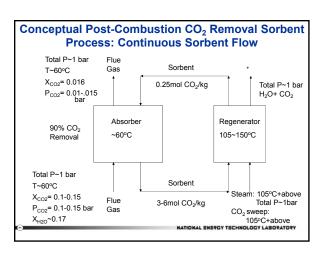
| $CO_2$ captured by carbonates. T <sub>1</sub> ref                                                                                                          | · · · · ·              |                               |                              |                            |                            |                          |                          |                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------------------|------------------------------|----------------------------|----------------------------|--------------------------|--------------------------|--------------------------|
| Reactions                                                                                                                                                  | CO <sub>2</sub><br>wt% | ΔE <sub>DFT</sub><br>(kJ/mol) | ΔE <sub>ZP</sub><br>(kJ/mol) | ΔH<br>(T=300K)<br>(kJ/mol) | ΔG<br>(T=300K)<br>(kJ/mol) | T <sub>1</sub><br>(K)    | T2<br>(K)                | T <sub>tr</sub><br>(K)   |
| $K_2CO_3$ ·1.5 $H_2O + CO_2$                                                                                                                               | 26.88                  | -40.47                        | -0.74                        | -40.68                     | -12.82                     | 580 <sup>b</sup>         | 370 b                    | 445 b                    |
| $= 2 KHCO_3 + 0.5 H_2O(g)$                                                                                                                                 |                        |                               |                              |                            |                            | 665°<br>510 <sup>d</sup> | 395°<br>335 <sup>d</sup> | 395°<br>515 <sup>d</sup> |
| K 60 + 60 + H 0( )                                                                                                                                         | 31.84                  | -154.43                       | 18.29                        | -141.73                    | -46.28                     | 490 <sup>b</sup>         | 420 <sup>b</sup>         |                          |
| $K_2CO_3 + CO_2 + H_2O(g)$<br>= 2KHCO_3                                                                                                                    |                        |                               |                              | -142.85ª                   | -44.72ª                    | 455°<br>515 <sup>d</sup> | 395°<br>445 <sup>d</sup> |                          |
| <sup>6</sup> Calculated by Chemistry package <sup>16</sup><br><sup>b</sup> when P <sub>1000</sub> = 1 bar<br><sup>c</sup> when P <sub>1000</sub> = 0.1 bar |                        |                               |                              |                            |                            |                          |                          |                          |
| <sup>d</sup> when P <sub>H2O</sub> = 0.1 bar<br><sup>d</sup> when P <sub>H2O</sub> = 10 bar                                                                |                        |                               |                              |                            |                            |                          |                          |                          |

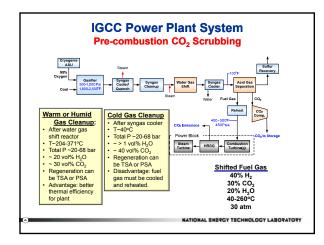
# Summary of the Methodology

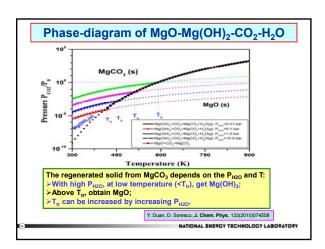

#### **4** Pros:

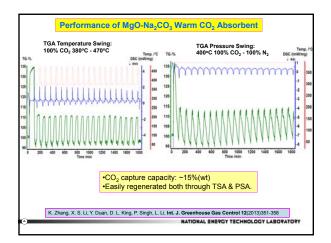

- Performance: the methodology can be used to search for solid > materials with improved CO2 capture performances;
- Reliability: For a given dataset, the promised candidates are always in the final short list and are not screened out;
- Economics: Only promised candidates are needed for experimental tests, which can speed up the searching process and save money;
- Forward predictions:
- Exploring new materials with unknown thermodynamic properties; Provide guidelines for future experimental work.
- Generally, this methodology can be expanded to other classes of solid compounds as well as solutions (ab initio +MD)
- 4 Cons:
  - Need to know the structures of materials with phase transitions; ۶
  - High accurate thermodynamic data (<10 kJ/mol) is not achievable; >
    - High computational demand for complicated systems

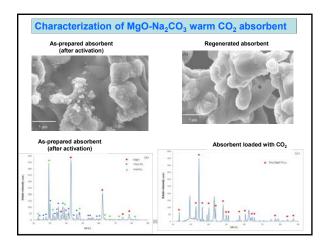

```
NATIONAL ENERGY TECHNOLOGY LABORATORY
```


#### **Further Work**


- **4** Using our computational screening methodology continue to explore different classes of oxides, multi-component salts, mixed/substituted/doped solids, etc.
- **4** Exploring the kinetics of the capture process to obtain the activation energy and reaction rates;
- Collaborate with CFD and Process modeling group, establish multi-scale modeling on capture process. (Atomistic-kinetic-CFD-process modeling).
- Based on screening results, experimental measurements will be conducted on those promising candidates;
- 4 Build a database of solid sorbents to satisfy industrial requirements. NATIONAL ENERGY TECHNOLOGY LABORATORY



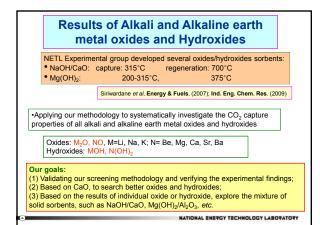



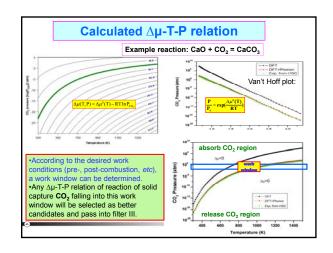





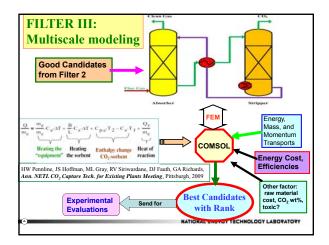


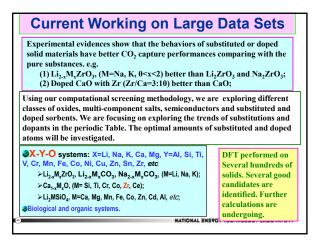


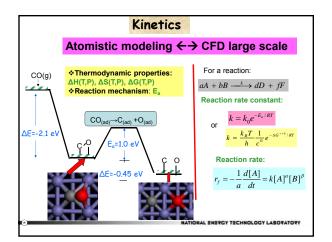



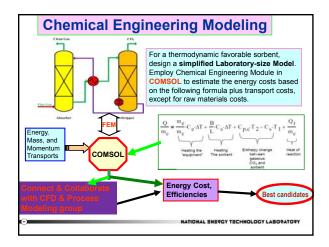




#### Conclusions


- Our methodology can predict thermodynamic properties of solid materials and their CO<sub>2</sub> capture reactions.
- ➢ By exploring series of lithium silicates with different Li₂O/SiO₂ ratio, we found that with decreasing Li₂O/SiO₂ ratio the corresponding silicate has a lower turnover temperature, and vice versa.
- Compared to pure MgO, the Na<sub>2</sub>CO<sub>3</sub>, K<sub>2</sub>CO<sub>3</sub> and CaCO<sub>3</sub> promoted MgO sorbent has a higher turnover T.
- These results provide guidelines to synthesize sorbent materials by mixing different solids with different ratio.
- Single solid may not satisfy the industrial operating conditions as CO<sub>2</sub> sorbent, however, by mixing two or more solids, the new formed solid may satisfy the industrial needs.
- Using our computational screening methodology continue to explore different classes of oxides, multi-component salts, mixed/substituted/doped solids, *etc.*Exploring the kinetics of the capture process to obtain the activation energy and reaction rates;
  Collaborate with CFD and Process modeling group, establish multi-scale modeling on capture process. (Atomistic-kinetic-CFD-process modeling).
  Based on screening results, experimental measurements will be conducted on those promising candidates;
  Build a database of solid sorbents to satisfy industrial requirements.

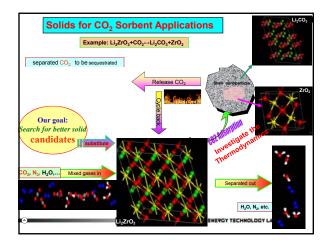

NATIONAL ENERGY TECHNOLOGY LABORATORY

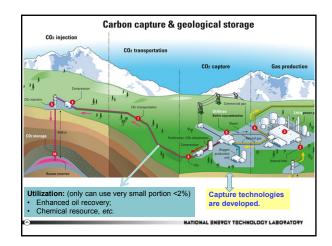


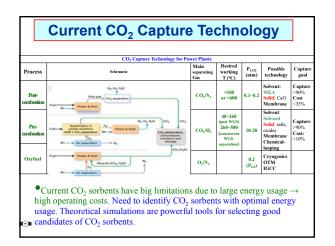



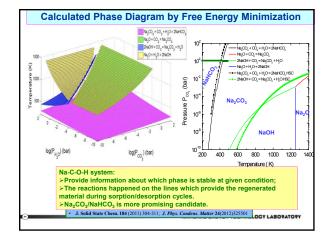

#### Further Work

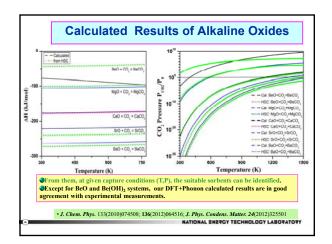


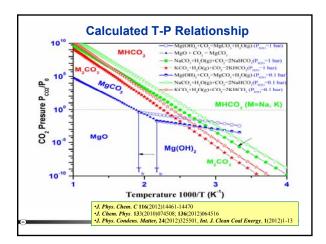


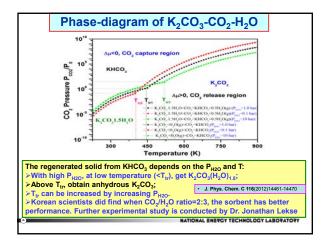



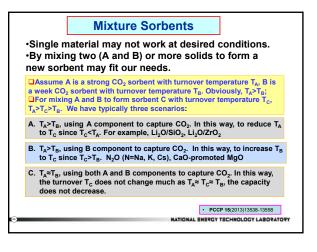





| Absorbe<br>nt                    | Reactions for CO <sub>2</sub> capture                               | ΔH°, K<br>J/mol. CO <sub>2</sub> | T,°C for CO <sub>2</sub><br>capture | T, °C for CO <sub>2</sub><br>release | Capacity,<br>mmol CO <sub>2</sub> /§ |
|----------------------------------|---------------------------------------------------------------------|----------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|
| MEA                              | 2MEA + CO <sub>2</sub> ↔ MEACOO <sup>-</sup> +<br>MEAH <sup>+</sup> | -167                             | 40-65                               | 100-150                              | 8.2                                  |
| K <sub>2</sub> CO <sub>3</sub>   | $K_2CO_3 + CO_2 + H_2O \leftrightarrow$<br>2KHCO <sub>3</sub>       | -143                             | ~50                                 | 350-400                              | 7.2                                  |
| Na <sub>2</sub> CO3              | $Na_2CO_3 + CO_2 + H_2O \leftrightarrow$<br>2NaHCO <sub>3</sub>     | -136                             | 60-70                               | 100-200                              | 9.4                                  |
| Li <sub>2</sub> SiO <sub>3</sub> | $Li_4SiO_4 + CO_2 \leftrightarrow Li_2CO_3 + Li_2SiO_3$             | -142                             | 600                                 | 850                                  | 8.3                                  |
| CaO                              | $CaO + CO, \leftrightarrow CaCO,$                                   | -178                             | 600-700                             | 800-900                              | 17.9                                 |


| Materials                                                                                       | BET surface area                                                                                | TGA Performance CO <sub>2</sub> wt%    |            |  |  |
|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------|------------|--|--|
|                                                                                                 | m²/g                                                                                            | Initial                                | 10 Cycles. |  |  |
| Nano MgO                                                                                        | 702                                                                                             | 3.1                                    | NA         |  |  |
| 5C synthesized                                                                                  | 19.9                                                                                            | 49.7                                   | 2.0        |  |  |
| 17C synthesized                                                                                 | 16.8                                                                                            | 50.6                                   | 5.2        |  |  |
| 24C synthesized                                                                                 | 15.6                                                                                            | 40.1                                   | 14.7       |  |  |
| 30C synthesized                                                                                 | 9.3                                                                                             | 42.5                                   | 15.1       |  |  |
| 37C synthesized                                                                                 | 2.9                                                                                             | 24.0                                   | 12.2       |  |  |
| Slowly mix Na                                                                                   | table MgO-Na <sub>2</sub> C(<br>$_2$ CO <sub>3</sub> solution and                               | •                                      |            |  |  |
|                                                                                                 | <sub>2</sub> CO <sub>3</sub> solution and                                                       | •                                      |            |  |  |
| I. Slowly mix Na<br>~30 °C. White                                                               | <sub>2</sub> CO <sub>3</sub> solution and                                                       | Mg(NO <sub>3</sub> ) <sub>2</sub> solu | tion at    |  |  |
| . Slowly mix Na<br>~30 °C. White<br>2. Settle the slur                                          | <sub>2</sub> CO <sub>3</sub> solution and slurry forms.                                         | Mg(NO <sub>3</sub> ) <sub>2</sub> solu | tion at    |  |  |
| I. Slowly mix Na<br>~30 °C. White<br>2. Settle the slur<br>3. Filtration unde                   | <sub>2</sub> CO <sub>3</sub> solution and slurry forms.                                         | Mg(NO <sub>3</sub> ) <sub>2</sub> solu | tion at    |  |  |
| . Slowly mix Na<br>~30 °C. White<br>. Settle the slur<br>. Filtration unde<br>. Dry the solid p | <sub>2</sub> CO <sub>3</sub> solution and<br>slurry forms.<br>ry overnight at roo<br>er vacuum. | Mg(NO₃)₂ solu<br>m temperature<br>C.   | tion at    |  |  |














| Summary                                                                                                                                 | / of t     | he Ca                     | aptu                     | re R                         | eacti          | ons                |        |
|-----------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------------|--------------------------|------------------------------|----------------|--------------------|--------|
| reaction                                                                                                                                | Wt%        | $\Delta E_{DFT}$ (kJ/mol) | $\Delta E_{ZP}$ (kJ/mol) | $\Delta \mathbf{H}$ (kJ/mol) | ∆G<br>(kJ/mol) | Т <sub>1</sub> (К) | Т2 (К) |
| Li <sub>2</sub> O +CO <sub>2</sub> ↔ Li <sub>2</sub> CO <sub>3</sub>                                                                    | 147.28     | -203.96                   | 4.52                     | -180.89                      | -133.42        | 1375               | 1025   |
| ${}^{l}_{3}Li_{8}SiO_{6}{+}CO_{2}{\leftrightarrow}Li_{2}CO_{3}{+}^{l}_{3}Li_{2}SiO_{3}$                                                 | 73.51      | -181.97                   | 5.16                     | -177.37                      | -129.11        | 1325               | 985    |
| $^{1}\!\!4\mathrm{Li}_8\mathrm{SiO}_6\mathrm{+CO}_2\mathrm{\leftrightarrow}\mathrm{Li}_2\mathrm{CO}_3\mathrm{+}^{1}\!\!4\mathrm{SiO}_2$ | 98.01      | -154.99                   | 5.42                     | -150.13                      | -102.04        | 1115               | 835    |
| $\rm Li_4SiO_4+CO_2 {\leftrightarrow} \rm Li_2CO_3+\rm Li_2SiO_3$                                                                       | 36.72      | -148.78                   | 5.97                     | -143.55                      | -94.05         | 1025               | 775    |
| $^{1/2}Li_4SiO_4+CO_2\leftrightarrow Li_2CO_3+^{1/2}SiO_2$                                                                              | 73.44      | -111.42                   | 6.07                     | -104.36                      | -57.44         | 765                | 585    |
| $Li_6Si_2O_7 {+} CO_2 \leftrightarrow Li_2CO_3 {+} 2Li_2SiO_3$                                                                          | 20.98      | -169.26                   | 13.09                    | -158.09                      | -104.38        | 1045               | 805    |
| ${}^{l_3}Li_6Si_2O_7{+}CO_2 \leftrightarrow Li_2CO_3{+}^{l_3}SiO_2$                                                                     | 62.93      | -105.79                   | 8.48                     | -96.08                       | -48.68         | 695                | 525    |
| Li <sub>2</sub> SiO <sub>3</sub> +CO <sub>2</sub> ↔Li <sub>2</sub> CO <sub>3</sub> +SiO <sub>2</sub>                                    | 48.92      | -74.06                    | 6.18                     | -65.08                       | -20.83         | 505                | 385    |
| $\rm Li_2Si_2O_5{+}CO_2 \leftrightarrow \rm Li_2CO_3{+}2SiO_2$                                                                          | 29.33      | -66.75                    | 5.90                     | -54.06                       | -13.87         | 455                | 345    |
| $Li_2Si_3O_7 \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$                                                  | 20.94      | -63.83                    | 5.52                     | -48.60                       | -11.26         | 435                | 335    |
| Phys. Rev. B 84                                                                                                                         | (2011)1041 | 13, 79(2009)(             | )14301;; <i> </i>        | PCCP 15 (2                   | 013)9752-97    | 60, 13538          | -13553 |
| )<br>                                                                                                                                   |            |                           | NATIO                    | NAL ENER                     | BY TECHNO      | DLOGY LA           | ABOQAT |

| he reaction                                         | mic properties (ΔΗ, ΔG) of the C<br>is of CO <sub>2</sub> capture by solids un<br>r) are also listed.                                                                                          | by solids under the conditions of pre-co              |                             | istion (P <sub>coz</sub> =2     |                                   | post-con                          |        |      |
|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------|---------------------------------|-----------------------------------|-----------------------------------|--------|------|
| atio                                                | reaction                                                                                                                                                                                       | absorbing<br>CO <sub>2</sub> Wt%                      | $\Delta E^{DFT}$            | $\Delta E^{ZP}$                 | ∆H<br>(T=300K)                    | ΔG<br>(T=300K)                    | Т,     | T2   |
| i <sub>8</sub> ZrO <sub>6</sub>                     | <sup>1</sup> / <sub>4</sub> Li <sub>8</sub> ZrO <sub>6</sub> +CO <sub>2</sub> ↔Li <sub>2</sub> CO <sub>3</sub> +<br><sup>1</sup> / <sub>4</sub> ZrO <sub>3</sub>                               | 72.50                                                 | -185.495                    | 5.681                           | -200.762<br>-203.393 <sup>b</sup> | -151.604<br>-153.432 <sup>b</sup> | 1460   | 1090 |
| :1                                                  | %Li <sub>8</sub> ZrO <sub>6</sub> +CO <sub>2</sub> ↔Li <sub>2</sub> CO <sub>3</sub> +<br>%Li <sub>2</sub> ZrO <sub>3</sub>                                                                     | 54.38                                                 | -206.945                    | 3.804                           | -215.156                          | -167.851                          | >1500  | 1220 |
|                                                     | <sup>2</sup> / <sub>5</sub> Li <sub>8</sub> ZrO <sub>6</sub> +CO <sub>2</sub> ↔Li <sub>2</sub> CO <sub>3</sub> +<br><sup>1</sup> / <sub>4</sub> Li <sub>6</sub> Zr <sub>2</sub> O <sub>7</sub> | 45.31                                                 | -203.751                    | 3.914                           | -220.043                          | -172.551                          | >1500  | 1250 |
| i <sub>6</sub> Zr <sub>2</sub> O <sub>7</sub><br>:2 | $^{1}$ Li <sub>6</sub> Zr <sub>2</sub> O <sub>7</sub> +CO <sub>2</sub> $\leftrightarrow$ Li <sub>2</sub> CO <sub>3</sub> +<br>$^{3}$ ZrO <sub>2</sub> <sup>a</sup>                             | 39.28                                                 | -155.942                    | 8.624                           | -169.500                          | -117.564                          | 1140   | 880  |
| .i <sub>2</sub> ZrO <sub>3</sub><br>:1              | $Li_2ZrO_3{+}CO_2{\leftrightarrow}Li_2CO_3{+}ZrO_2$                                                                                                                                            | 28.75                                                 | -146.648                    | 11.311                          | -158.562                          | -103.845                          | 1000   | 780  |
| Turnov<br>Li <sub>2</sub> O/Z                       | ver T: Li <sub>8</sub> ZrO <sub>6</sub> ><br>rO <sub>2</sub> ratio: 4:1                                                                                                                        | Li <sub>6</sub> Zr <sub>2</sub> O <sub>7</sub><br>3:2 | >Li <sub>2</sub> ZrO<br>1:1 | 3                               |                                   |                                   |        |      |
|                                                     | Question                                                                                                                                                                                       | : Can Li <sub>s</sub>                                 | ZrO <sub>6</sub> &          | Li <sub>6</sub> Zr <sub>2</sub> | O <sub>7</sub> be fu              | lly reger                         | nerate | d?   |