
Chapter 10
Electrospun Nanofibrous Sorbents
and Membranes for Carbon Dioxide Capture

Xianfeng Wang and Bingyun Li

Abstract CO2 emission resulting from combustion of fossil fuel is a major
anthropogenic factor for global warming. Current commercial CO2 capture
approaches using aqueous amine scrubbing require high energy consumption
for regeneration which leads to significantly decreased efficiency. Therefore,
novel CO2 capture materials and technologies for economical CO2 capture are
of the utmost importance. Nanofibers, mainly fabricated by electrospinning,
have unique porous structure, high surface area, and good mechanical properties
thereby exhibit potential as advanced sorbents for CO2 capture and storage.
More significantly, nanofiber-based sorbents are expected to have extremely low
resistance for gas transport and extremely fast kinetics due to the unique structure
of nanofibers. In this chapter, we summarize recent progress in the development of
electrospun nanofibrous sorbents or membranes (e.g., nanofiber-supported metal-
organic frameworks, carbon nanofibers, ionic liquid-based nanofibrous membranes,
metal oxide nanofibers, etc.) for CO2 capture, describe the types of nanofibrous
materials that have been developed, and discuss their fabrication variables and CO2

adsorption performance in detail. This chapter may pave the way for developing
advanced nanofibrous sorbents for CO2 capture from power plants and even the
atmosphere.
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10.1 Introduction

The global climate change phenomenon, which is mainly caused by CO2 emission
into the atmosphere, has attracted more and more attention [1–3]. It is reported
that the concentration of CO2 in the atmosphere has increased from about 310
to 394 ppm during the last half century and it is projected to continue to rise
if anthropogenic sources remain unchecked [4, 5]. Technologies for CO2 capture
and storage (CCS) present some of the most promising and effective options
for large-scale reduction in CO2 emissions [1]. The CCS strategies embody a
group of technologies for the capture of CO2 from power plants, followed by
compression, transport, and permanent storage. Capturing CO2 from the mixed-gas
streams produced during power generation is a first and critical step for CCS. Three
strategies for incorporating capture into power generation scenarios are of primary
focus today: precombustion, post-combustion, and oxyfuel processes.

To reduce the amount of CO2 released into the atmosphere, four main methods
are being developed for CCS: solution absorption, adsorption, membrane diffusion,
and cryogenic distillation [6, 7]. It is evident that the achievement of most of
these technologies depends heavily on the development of materials. Among them,
adsorption or sorbent is of great interest because of its low energy consumption,
low equipment cost, and ease of application. A number of materials have been used
for CO2 adsorption, and materials with large surface area (e.g., zeolites, activated
carbon) have been widely investigated. Nanomaterials have shown potential in CO2

capture due to their high surface area and adjustable properties and characteristics.
Higher surface areas provide more sites of reaction and hence boost the adsorption
or absorption capacity [8]. For instance, CaO nanopods with higher surface area
(16.92 m2/g) showed higher CO2 capture capacity [17.5 mmol CO2/(g sorbent)]
than that [12.1 mmol CO2/(g sorbent)] of commercial CaO sorbents with surface
area of 0.40 m2/g [9].

Nanomaterials also offer an advantage in that their structure can be tailor-made to
improve the properties and characteristics of a compound or element. For example,
carbon nanotubes are able to be produced in different dimensions and diameters.
Nanofibers, as one of the most important one-dimensional (1D) nanomaterials, are
expected to have extremely low resistance for gas transport and extremely fast
kinetics; therefore, they have great potential for CO2 capture and storage. As a
nanofabrication technique, electrospinning has been established as a robust and
versatile method for fabricating fibers with diameters down to the nanometer by
applying a high voltage to a polymer solution [10, 11]. A variety of materials
such as polymers, ceramics, and even metals have been electrospun into fibers
with well-controlled sizes, compositions, and structures [12]. It has been shown
that the outstanding properties of such nanofibers are highly attractive to numerous
applications including biotechnology, textiles, filters, sorbents, sensors, and so
on [13]. Benefitting from the unique properties (e.g., high porosity, high surface
area, and good mechanical properties) of nanofibrous structures [14], nanofibrous
adsorbent has emerged as a new class of adsorption materials, and considerable
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effort has been applied to their adsorbent design and optimization [15, 16]. In this
chapter, currently emerging new materials for CO2 capture are briefly introduced
and then the recent advances of nanofibrous sorbents used in CO2 capture and
separation are highlighted. We conclude with a summary of current and future
research efforts and opportunities in the development of electrospun nanofibers for
CO2 capture applications.

10.2 New Materials for CO2 Capture

A number of promising new materials exist for CO2 capture from precombustion,
post-combustion, and oxyfuel processes [17]. Examples of new materials include
ionic liquids (ILs), metal-organic frameworks (MOFs), membranes, and fibrous and
nanofibrous sorbents (Fig. 10.1).

Fig. 10.1 Schematic of new materials for CO2 capture. Permissions for individual pictures
were obtained (Reprinted with the permission from Brennecke and Gurkan [18]. Copyright
2010 American Chemical Society. Reprinted with the permission from Rowsell and Yaghi [22].
Copyright 2006 American Chemical Society. Reprinted from Thiruvenkatachari et al. [27].
Copyright 2009, with permission from Elsevier. Reprinted with permission from Wang et al. [30].
Copyright 2010 IOP Publishing Ltd.)
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10.2.1 Ionic Liquids (ILs)

ILs are low-melting salts that are attractive for a number of applications as they
are relatively nonvolatile, nonflammable, environmentally benign, and exceptionally
thermally stable [18]. In addition, there are numerous combinations of cations and
anions that can be used to produce ILs, and thus chemical and physical properties of
ILs can be tuned, which is needed to design an energy-efficient liquid absorbent for
CO2 capture. The mechanism for CO2 capture in ILs is often based on physisorption
and involves a weak association between the IL and CO2 molecules [19]. Once the
CO2 has been removed from the gas mixture, it can be released from the ILs (which
would be reused) by either a decrease in pressure or an increase in temperature [18].
While the viscosity of ILs minimizes solvent loss from the gas stream, this attribute
also limits mass transfers, and they often suffer from low rates of absorption.
To overcome these shortcomings and increase the capacity of simple ILs, amine-
functionalized ILs have been developed, which allow higher rates of sorption to be
achieved at pressures relevant to flue streams [19, 20]. A number of reports have also
demonstrated high CO2/N2 selectivity in polymerized ILs, which exhibit enhanced
CO2 solubility relative to the monomeric ILs [21].

10.2.2 Metal-Organic Frameworks (MOFs)

MOFs are novel materials constructed by coordinate bonds between multidentate
ligands and metal atoms or small metal-containing clusters [4], which have recently
attracted intense research interest because of their permanent porous structures,
large surface areas, and potential applications as novel adsorbents [22]. Most of
the MOF materials have three-dimensional (3D) structures with uniform pores and
a network of channels. The integrity of these pores and channels can be retained
after careful removal of the guest species. The remaining voids within the 3D
structures can then adsorb other guest molecules. Several reviews have summarized
the research efforts in gas adsorption applications for MOFs, such as hydrogen and
methane storage, and CO2 capture [4, 19]. Recently, Liu and co-workers contributed
a review on the progress and challenges in using MOFs for adsorption-based CO2

capture including both experimental and simulation studies [4].

10.2.3 Membranes

A gas separation membrane typically consists of multiple layers with different
functions. A dense ultrathin selective layer (�100 nm in thickness) performs the
molecular separation, while a microporous support structure provides mechani-
cal strength and minimal transport resistance [23]. The constituent materials of
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membranes are typically classified as inorganic (e.g., ceramic, metal oxide, metallic,
molecular sieves, and MOFs) or organic (e.g., cellulose acetate, polysulfone,
polyamide, and polyimide) [19].

A membrane separates species by selectively permeating certain components of
a mixture faster than others through a thin barrier in response to an external driving
force, such as a concentration, partial pressure, or, more generally, a chemical
potential gradient. A variety of mechanisms influence the separation of gases by a
membrane, with the most important being solution diffusion and molecular sieving.
Membranes offer a number of inherent advantages over other technologies for
separating gases, including (1) simple, passive operation with no moving parts;
(2) environmentally benign separation without the use of hazardous chemicals;
(3) small footprint, which is critically important in some applications (e.g., aboard
aircraft, spacecraft, or on offshore natural gas platforms); and (4) lower energy use
because they can separate species without a phase change.

Clearly, membranes represent a promising technology for gas separation; how-
ever, they suffer a number of drawbacks, particularly with regard to CO2 capture
from flue gas. In this case, the low CO2 partial pressure provides a minimal driving
force for gas separation, which creates an energy penalty due to the need for
compression of the feed gas. Membrane materials also suffer from a decrease in
permeability over time due to particulate deposition on the surface [19].

10.2.4 Fibrous Sorbents

Solid amine adsorbents using a fibrous structure instead of particles as the matrix are
expected to offer amazing benefits (e.g., fast kinetics and high CO2 capture capacity)
for the adsorption of CO2 because of their high external surface area and porosity,
low pressure drops, and flexibility of the matrix fibers. Recently, Li et al. [24]
developed a novel fibrous adsorbent for CO2 capture by coating polyethylenimine
(PEI) on a glass fiber matrix using epoxy resin as a cross-linking agent. They found
that a maximum adsorption capacity of 6.3 mmol CO2/(g of PEI) was obtained at a
PEI/epoxy resin ratio of 10:1. Then, they replaced epoxy resin (MW D 370) with a
lower molecular weight cross-linking agent (i.e., epichlorohydrin, MW D 92.5) and
developed adsorbents of PEI modified glass fibers [23]. The resultant fibrous sorbent
improved adsorption performance (e.g., higher CO2 capacity, faster kinetics, and
better regenerability) [25]. The maximum CO2 adsorption capacity of 13.08 mmol
CO2/(g of PEI) was achieved at a coating weight of 45 wt%. Polymer supports for
amines have attracted considerable attention since they are light in weight, flexible,
and easy to handle [6]. Yang et al. [26] demonstrated that solid amine-containing
fibrous adsorbent could be prepared by pre-irradiation grafting copolymerization
of allylamine onto polyacrylonitrile fiber (PAN-AF). The higher grafting degree
resulted in higher CO2 uptake, and the adsorption capacity of PAN-AF reached
6.22 mmol CO2/(g of PAN-AF) at the grafting degree of 60 wt%. They attributed
the good performance of this fibrous adsorbent to the fibrous structure, which might



254 X. Wang and B. Li

have reduced the resistance to gas flow, thereby maximizing sorbent performance
while minimizing energy consumption, and the highly stable interface (i.e., grafting
copolymerization of amines onto fibers) between amines and the support [26].

Apart from the amine-modified fibrous adsorbents, porous carbon materials
are well-known adsorbents for CO2 adsorption due to their highly developed
porosity, extended surface area, flexible surface chemistry, and high thermal sta-
bility. Recently, some new classes of carbon materials (e.g., carbon fiber, carbon
molecular sieves) have emerged as adsorbents for gas separation and storage.
Carbon fiber refers to fibers which are at least 90 wt% carbon in composition
obtained by the controlled pyrolysis of an appropriate precursor material (e.g.,
pitch, PAN, rayon, nonheterocyclic aromatic polymers) [27]. Much research has
been devoted to the preparation of PAN-based activated carbon fiber (PAN-ACF)
from modified PAN, and some attention has been paid to the use of PAN-ACFs for
CO2 removal. Hierarchical porous PAN-ACFs with a large Brunauer-Emmett-Teller
(BET) surface area were made from PAN fibers through pre-oxidation and chemical
activation. This type of material contains a large number of nitrogen-containing
groups (N content > 8.1 wt%) and consequently basic sites, leading to a faster
adsorption rate and a higher CO2 adsorption capacity (2.4 mmol/g). Moreover, PAN-
ACF adsorbents had stable CO2 adsorption/desorption performance under multiple
cycling conditions [28].

10.3 Why Electrospun Nanofibers?

Due to the unique structure and mechanical properties of nanofibers, nanofiber-
based sorbents are expected to have extremely low resistance for gas transport and
thereby extremely fast kinetics. Due to the high surface area and low density of
nanofibers, the developed nanofibrous sorbents are also expected to have high CO2

capture capacity. Various nanofibrous sorbents (e.g., nanofibrillated cellulose and
graphite nanofibers or GNFs) have been developed for CO2 capture. For instance,
Meng et al. [16] found that porous GNFs could be fabricated using a KOH etching
method at temperatures in the 700–1,000 ıC range (Fig. 10.2a). The CO2 adsorption
isotherms revealed that GNFs treated under 900 ıC had the highest BET surface area
(567 m2/g) and the best CO2 adsorption capacity of 59.2 mg/g (Fig. 10.2b).

Electrospinning is a simple and versatile technique to produce continuous
nanofibers with a diameter down to nanometers. Due to the combination of a high
fiber production rate and the simplicity of the setup, the electrospinning approach
has the unique ability to produce nanofibers with most materials (organic, inorganic,
or hybrid), easily providing various fibers with the desired composition and surface
properties [15]. Their high surface-to-volume ratio, large porosity (up to over
80 %), and adjustable functionality make electrospun fibrous membranes useful for
numerous applications in particulate gas separation [29, 30].
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Fig. 10.2 (a) SEM image of chemical-treated GNFs. (b) CO2 isotherms of the pristine and
chemical-treated GNFs (Reprinted from Meng and Park [16]. Copyright 2010, with permission
from Elsevier)

10.4 Electrospun Nanofibers for CO2 Capture

10.4.1 Electrospun Nanofiber-Supported MOF
for CO2 Capture

Great attention has been paid to preparing MOF particles with novel structures
and desired properties. Recently, new focus has been placed on the fabrication
of supported MOF thin films and membranes [31], particularly given their utility
in engineering-related applications such as membrane-based molecular separators,
reactors, and chemical sensors [15]. The use of compact substrates and surface mod-
ification with organic functional groups are the most commonly used approaches for
fabricating MOF thin films [32]. More recently, several attempts have been made
to generate more useful MOF membranes by growing continuous MOF crystals
on porous organic polymer substrates [33, 34]. Nevertheless, well-intergrown,
free-standing, and high MOF-loading films were difficult to achieve. Therefore,
a new class of porous substrates with easily tunable structural parameters (e.g.,
composition, porosity, thickness, and size), in particular, surface properties, or with
seed crystals tightly embedded on the surface, is highly desirable.

Nanofibrous membranes produced by electrospinning are ideal porous substrates
for developing chemical systems due to their high specific surface area, large
porosity, and enormous structural and chemical tenability [15]. Recently, Ostermann
et al. [35] reported the fabrication of MOF-containing polymer nanofibers via
electrospinning. However, since the MOF particles were embedded in the electro-
spun polymer nanofibers, an additional diffusion barrier formed around the MOF
particles and thus resulted in reduced gas uptake and access into MOFs. In order
to overcome this drawback, Wu et al. [15] reported a new strategy to produce free-
standing MOF membranes using electrospun nanofibrous membranes as skeletons.
A two-step procedure was developed, namely, the preparation of MOF nanocrystal
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(e.g., zeolite-imidazolate framework-8 or ZIF-8) doped electrospun fibers followed
by a second growth. By using a second-growth approach with MOF crystal embed-
ded electrospun fibrous mats as the seeding layer and skeleton, an MOF membrane
mostly consisting of MOF crystals was obtained. Compared with the MOF crystal
embedded electrospun fibers, the second-growth MOF membranes exhibit a much
higher gas adsorption capacity. Gas separation experiments of the prepared free-
standing ZIF-8 membrane were tested in custom-made analytical equipment. In the
case of the 1:1 mixture of N2/CO2, due to the preferred affinity of ZIF-8 for CO2 and
its high specific surface area, the membrane exhibited capture of the CO2 component
from the mixture. After the “capture” by the ZIF membranes, the proportion of CO2

(50 %) in the effluent was reduced to less than 30 %, and for N2, it increased to more
than 70 %. The separation factor of N2/CO2 reached 2.4 on average.

10.4.2 Electrospun Carbon Nanofibers for CO2 Capture

Porous carbon materials have been preferred for CO2 adsorption due to their highly
developed porosity, extended surface area, surface chemistry, and thermal stability.
Various carbon materials such as activated carbons, activated carbon fibers (ACF),
carbon molecular sieves, and carbon nanotubes have been used as adsorbents for
CO2 [36, 37]. Recently, Bai et al. [38] reported the fabrication of oxyfluorinated
activated electrospun carbon nanofibers (OFACFs) for CO2 capture. Electrospun
CFs were prepared from a PAN/N, N-dimethylformamide (DMF) solution via
electrospinning and heat treatment. The electrospun CFs were chemically activated
in order to generate the pore structure, and then oxyfluorination was used to modify
the surface. Through the N2 adsorption isotherm, the specific surface area and pore
volume decreased slightly as a result of oxyfluorination treatment. Nevertheless,
the CO2 uptake of OFACFs increased up to 16.2 wt% due to the highly developed
microporous structure and semi-ionic interaction effect of oxyfluorination. The
mechanism of the improved effects of oxyfluorinated activated carbon nanofibers
was proposed. The nonpolar CO2 molecules near the carbon pores are affected
by the semi-ionic interaction of oxygen groups, which has the lone-pair electron,
causing the electron attraction in the CO2 molecules. This reaction might play
an important role as a guide for enhancing the CO2 storage capacity. Eventually,
the CO2 gas can be stored in the silt pores of carbon. Some of the residual CO2

molecules in the carbon silt pores can also be affected by oxygen group effects, such
as the grabbing effects due to semi-ionic interaction, resulting in the high efficiency
of CO2 storage [38].

Recently, Katepalli et al. [39] reported the synthesis of a carbon polymer
micro-/nanocomposite by electrospinning PAN nanofibers directly onto ACF sub-
strates to prepare hierarchical fabric structures (ACF-PANS) (Fig. 10.3a). The
composite materials were subsequently pyrolyzed, followed by steam activation,
to yield the hierarchical activated carbon fabrics consisting of PAN-derived carbon
nanofiber (CNF) on ACF (ACF-PANC). These multi-scale fabrics (ACF-PANS
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Fig. 10.3 (a) SEM image of ACF-PANS (scale bar equals to 20 �m) and (b) breakthrough
profiles of SO2 over different materials (ACF, ACF-CNF, ACFPAN, ACF-PANS, and ACF-PANC)
(Reprinted from Katepalli et al. [39]. Copyright 2011, with permission from Elsevier)

and ACF-PANC) were tested for their adsorption properties toward common
atmospheric pollutants (e.g., SO2, CO2, NO, and toluene), and the performance
was compared to ACF and another hierarchical carbon fabric fabricated by growing
carbon nanofibers on metal-impregnated ACF (ACF-CNF) by chemical vapor
deposition. Interestingly, the performance of the ACF-PANS was found to be
superior to that of ACF, ACF-PANC, and ACF-CNF fabrics (Fig. 10.3b). The
superior adsorptive performance of ACF-PANS may be attributed to the large
number of nitrogen-based surface functional groups, which favored the adsorption
and catalytic oxidation of SO2 or CO2.

10.4.3 Ionic Liquid-Based Nanofibrous Membranes
for CO2 Separation

To date, many kinds of CO2 separation membranes have been reported, including
polymeric membranes, composite membranes, and facilitated transport membranes.
Further improvements in membrane performance depend on effective CO2 separa-
tion materials, and one candidate is ILs. It has been reported that ILs have good
CO2 selectivity, suggesting that they may be a possibility for the development
of new CO2 separation materials. Since ILs are liquid at room temperature, it is
necessary to affix ILs to appropriate support materials. Supported IL membranes
have been prepared by impregnation of commercial porous polymer films with 1-
n-hexyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([hmim][Tf2N])
and have obtained good CO2/He separation properties [40]. Recently, electrospun
Nafion/polyethylene oxide (PEO)-supported IL membranes were fabricated for CO2

separation [41]. In this composite membrane, the electrospun Nafion/PEO material
acted as a gutter layer for ILs and PEO was added to form clean nanofibrous
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Fig. 10.4 SEM images of the (a) surface and (b) cross-section of an electrospun Nafion/PEO
composite membrane. (c) Cross-sectional image of an electrospun Nafion/PEO composite mem-
brane containing [hmim][PF6]. (d) Ideal selectivity and (e) CO2 permeance of the membrane
prepared with IL, electrospun Nafion-IL, and Nafion-IL membranes (Reprinted from Yoo et al.
[41]. Copyright 2010, with permission from Elsevier)

membranes via electrospinning. Figure 10.4 shows the representative scanning
electron microscopy (SEM) images of the Nafion/PEO electrospun structures. It can
be seen that dry membranes are composed of numerous randomly oriented fibers
with diameters of about 300 nm (Fig. 10.4a). The SEM image of IL-swollen Nafion
membranes showed that almost all the voids among fibers were filled (Fig. 10.4c).
Figure 10.4d and e presents the CO2 separation parameters of IL, Nafion-IL
dense membranes, and electrospun Nafion/PEO supported IL membranes. The gas
permeance and selectivity of electrospun Nafion/PEO/[hmim][BF4] maintained the
characteristics of supported IL membranes containing [hmim][BF4], while the CO2

permeance through the electrospun Nafion/PEO/[hmim][PF6] increased from 20 to
28 GPU. The selectivity of CO2/CH4 slightly increased from 17.1 to 22.4, implying
that the high adsorption of [hmim][PF6] into Nafion made a definite contribution in
CO2 separation.

Recently, Tang et al. [21] reported that poly(ionic liquid)s showed significantly
enhanced and fast CO2 absorption compared to ILs. Especially, the polymers of
tetraalkylammonium-based ILs have CO2 sorption capacities 6.0–7.6 times of those
of room temperature ILs. Electrospinning of the poly(ionic liquid) solution was first
demonstrated by Chen and co-workers [42]. Figure 10.5 shows the electrospun
fibers from various concentrations of poly(1-[(2-methacryloyloxy)ethyl]-3-
butylimidazolium tetrafluoroborate or MEBIm-BF4) in cosolvent 3/1 acetoni-
trile/DMF. At 2.5 wt%, a concentration below the entanglement concentration,
only droplets were obtained (Fig. 10.5a). Beaded fibers were observed at 5 and
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Fig. 10.5 Concentration effect on the electrospinning of poly(MEBIm-BF4) in 3/1 acetoni-
trile/DMF. Polymer concentrations: (a) 2.5, (b) 5, (c) 6, and (d) 8 wt% (Reprinted with the
permission from Chen and Elabd [42]. Copyright 2009 American Chemical Society)

6 wt% (Fig. 10.5b, c) and defect-free fibers were formed at 8 wt% (Fig. 10.5d).
Due to high solution conductivities, electrospinning produces fibers approximately
an order of magnitude smaller than neutral polymers at equivalent normalized
solution concentrations. Although the CO2 capture performance of poly(ionic
liquid) nanofibers has not been reported, we can expect that these novel nanofibrous
materials will be very prospective as sorbent and membrane for CO2 separation.

10.4.4 CO2 Sequestered in Electrospun Metal Oxide
Nanofibers

Most of the electrospinning procedures that yield metal oxide nanofibers involve
pyrolysis of a guide polymer as a final processing step. Bender and co-workers
demonstrated, using diffuse reflectance Fourier transform infrared spectroscopy
(DRIFTS), that CO2 is sequestered in electrospun metal oxide nanofibers upon
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Fig. 10.6 (a) SEM image of TiO2 nanofibers and (b) DRIFTS spectra of TiO2 nanofibers before
and after pyrolysis (Reprinted from Bender et al. [43]. Copyright 2006, with permission from
Elsevier)

removal of the guide polymers by pyrolysis [43]. CO2 is not present before
pyrolysis and is formed during combustion of the polymer. Figure 10.6 shows a
representative SEM image of titania (TiO2) nanofibers after 700 ıC pyrolysis. When
the composite nanofibers are heated to 700 ıC, it shows a DRIFTS feature around
2,340–2,350 cm�1 from CO2 (Fig. 10.6b). They propose that CO2 is trapped within
the fibers as opposed to being adsorbed on the surface and the nature of the metal
oxide nanofiber structure is responsible for the CO2 entrapment.

10.5 Concluding Remarks and Outlook

CO2 removal from post-combustion flue gas at large point sources has been
spotlighted in recent years as a potential way to reduce greenhouse gas emissions.
Among a range of separation technologies, adsorption with nanomaterial-based
sorbents is emerging to be one of the most promising CO2 capture strategies. In
this chapter, we reviewed recent progress in developing electrospun nanofibrous
sorbents with potential applications for CO2 removal. Clearly, the selection of
capture materials is essential for any technologies in CO2 removal. In general,
nanofibrous materials have advantages such as ease of design and synthesis, high
porosity, tailored pore properties, high surface area, and good mechanical properties,
which make them highly attractive for the development of sorbents with high CO2

capture capacity and fast kinetics.
Despite recent advances toward the development of nanofibrous sorbents for

CO2 capture applications, several challenges still remain. (1) Some nanofibrous
materials do not have CO2 adsorption ability until they are modified with amine
groups or ILs as described in this chapter. However, the undesired blocking of fiber
surfaces/interior with amines or ILs will reduce CO2 capacity and kinetics of the
adsorbents. Further research should focus on the achievement of effective surface
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modification strategies. For example, surface modifying nanofibrous materials using
layer-by-layer nano-assembly technology [44, 45] by depositing a CO2-adsorbing
amine polymer will be a potential method to solve this problem. (2) The gas flows
treated in practical CO2 capture always involve water, and it is not economically
feasible to dry the flue gas by an additional process before separation. Therefore,
adsorption materials require a high tolerance to water or superhydrophobicity.
However, quite few investigations of the effect of water on the capture performances
of nanofibrous adsorbents have been reported. Addressing this issue should include
research on both the physical co-adsorption of water in the nanofibrous materials
and the material structure and functional design. (3) In parallel with experimental
studies, computational modeling methods must be further developed as a tool to
predict the performance of nanofibrous sorbents which are proposed for a given sep-
aration process. Despite the numerous challenges surrounding CO2 removal, further
understanding of fibrous sorbent structure-property relationships and the subsequent
improvement of sorbent performance under realistic operating conditions will likely
allow for the realization of nanofibrous sorbents in practical CO2 capture processes
in the near future.
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