A headshot photo of Lothar Krinke.

Lothar Krinke, PhD

Adjunct Assistant Professor

Contact Information

PO Box 9303
3rd Floor, BMRC
108 Biomedical Road
Morgantown, WV 26506


  • Department of Neuroscience
  • Rockefeller Neuroscience Institute

Graduate Training

  • Ph.D. in Molecular Biology, University at Albany, State University of New York


  • American Cancer Society Postdoctoral Research Fellowship, California Institute of Technology

Research Interests

My research interests include the broad area of neuromodulation and the molecular biology of gene control.

Currently, I am exploring research related to transcranial magnetic stimulation.  I am conducting some work in navigated TMS and am interested in new indications for TMS such as substance abuse disorder, pain, OCD and dementia.  We need to develop better TMS technology and find ways to use neurophysiological markers to stratify patients that could benefit from TMS and to eventually build a close loop TMS system.

In the past, I have been involved with deep brain stimulation research, therapeutic brain infusion and the use of molecules that inhibit RNA expression in neuronal tissue.

I am currently the CEO, of Magstim Inc. a TMS company.  I also serve on the Board of the UCLA Brain Mapping Medical Research Organization.

Recent Publications

Mahoney JJ 3rd, Hanlon CA, Marshalek PJ, Rezai AR, Krinke L. Transcranial magnetic stimulation, deep brain stimulation, and other forms of neuromodulation for substance use disorders: Review of modalities and implications for treatment. J Neurol Sci. 2020 Nov 15;418:117149. 

Krinke L, Mahoney M, Wulff DL. The role of the OOP antisense RNA in coliphage lambda development. Molecular Microbiology 1991 May; 5(5): 1265-72.

Krinke L, Wulff DL. RNase III - dependent hydrolysis of lambda cII-O gene mRNA mediated by lambda OOP antisense RNA. Genes and Development, 1990 December; 4(12A): 2223-33.

Krinke L, Wulff DL. The cleavage specificity of RNase III. Nucleic Acids Research 1990 August 25; 18(16): 4809-15.

Krinke L, Wulff DL. OOP RNA, produced from multicopy plasmids, inhibits lambda cII gene expression through an RNase III - dependent mechanism. Genes and Development. 1987 November; 1(9): 1005-13.

Espay et al. Technology in Parkinson's disease: Challenges and Opportunities. Mov Disord., 2016; 31: 1272–1282.

Bari et al. Charting the road forward in psychiatric neurosurgery: Proceedings of the 2016 American Society for Stereotactic and Functional Neurosurgery workshop on neuromodulation for psychiatric disorders. J Neurol Neurosurg Psychiatry. 2018 Aug;89(8):886-896.